970 resultados para Computational methods
Resumo:
Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the classic systems for studying this is the activation of the hunchback (hb) gene in early fruit fly (Drosophila) segmentation by the maternally-derived gradient of the Bicoid (Bcd) protein. Gene regulation is subject to intrinsic noise which can produce variable expression. This variability must be constrained in the highly reproducible and coordinated events of development. We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter in which the number and strength of Bcd and Hb (self-regulatory) binding sites can be varied. Model parameters are fit to data from WT embryos, the self-regulation mutant hb(14F), and lacZ reporter constructs using different portions of the hb promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in the hb promoter (and their strengths) also play a role in buffering noise. The model is robust to the variation in Bcd binding site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory dynamics reduce hb output noise. Insofar as many of these are common features of genes (e. g. multiple regulatory sites, cooperativity, self-feedback), the current results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development.
Resumo:
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.
Resumo:
Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.
Resumo:
Background: Identifying local similarity between two or more sequences, or identifying repeats occurring at least twice in a sequence, is an essential part in the analysis of biological sequences and of their phylogenetic relationship. Finding such fragments while allowing for a certain number of insertions, deletions, and substitutions, is however known to be a computationally expensive task, and consequently exact methods can usually not be applied in practice. Results: The filter TUIUIU that we introduce in this paper provides a possible solution to this problem. It can be used as a preprocessing step to any multiple alignment or repeats inference method, eliminating a possibly large fraction of the input that is guaranteed not to contain any approximate repeat. It consists in the verification of several strong necessary conditions that can be checked in a fast way. We implemented three versions of the filter. The first is simply a straightforward extension to the case of multiple sequences of an application of conditions already existing in the literature. The second uses a stronger condition which, as our results show, enable to filter sensibly more with negligible (if any) additional time. The third version uses an additional condition and pushes the sensibility of the filter even further with a non negligible additional time in many circumstances; our experiments show that it is particularly useful with large error rates. The latter version was applied as a preprocessing of a multiple alignment tool, obtaining an overall time (filter plus alignment) on average 63 and at best 530 times smaller than before (direct alignment), with in most cases a better quality alignment. Conclusion: To the best of our knowledge, TUIUIU is the first filter designed for multiple repeats and for dealing with error rates greater than 10% of the repeats length.
Resumo:
Background: Feature selection is a pattern recognition approach to choose important variables according to some criteria in order to distinguish or explain certain phenomena (i.e., for dimensionality reduction). There are many genomic and proteomic applications that rely on feature selection to answer questions such as selecting signature genes which are informative about some biological state, e. g., normal tissues and several types of cancer; or inferring a prediction network among elements such as genes, proteins and external stimuli. In these applications, a recurrent problem is the lack of samples to perform an adequate estimate of the joint probabilities between element states. A myriad of feature selection algorithms and criterion functions have been proposed, although it is difficult to point the best solution for each application. Results: The intent of this work is to provide an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools such as scatterplots, parallel coordinates and graphs. A feature selection approach for growing genetic networks from seed genes ( targets or predictors) is also implemented in the system. Conclusion: The proposed feature selection environment allows data analysis using several algorithms, criterion functions and graphic visualization tools. Our experiments have shown the software effectiveness in two distinct types of biological problems. Besides, the environment can be used in different pattern recognition applications, although the main concern regards bioinformatics tasks.
Resumo:
Background: DAPfinder and DAPview are novel BRB-ArrayTools plug-ins to construct gene coexpression networks and identify significant differences in pairwise gene-gene coexpression between two phenotypes. Results: Each significant difference in gene-gene association represents a Differentially Associated Pair (DAP). Our tools include several choices of filtering methods, gene-gene association metrics, statistical testing methods and multiple comparison adjustments. Network results are easily displayed in Cytoscape. Analyses of glioma experiments and microarray simulations demonstrate the utility of these tools. Conclusions: DAPfinder is a new friendly-user tool for reconstruction and comparison of biological networks.
Resumo:
Background: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results: This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions: Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.
Resumo:
Background: Mutations in TP53 are common events during carcinogenesis. In addition to gene mutations, several reports have focused on TP53 polymorphisms as risk factors for malignant disease. Many studies have highlighted that the status of the TP53 codon 72 polymorphism could influence cancer susceptibility. However, the results have been inconsistent and various methodological features can contribute to departures from Hardy-Weinberg equilibrium, a condition that may influence the disease risk estimates. The most widely accepted method of detecting genotyping error is to confirm genotypes by sequencing and/or via a separate method. Results: We developed two new genotyping methods for TP53 codon 72 polymorphism detection: Denaturing High Performance Liquid Chromatography (DHPLC) and Dot Blot hybridization. These methods were compared with Restriction Fragment Length Polymorphism (RFLP) using two different restriction enzymes. We observed high agreement among all methodologies assayed. Dot-blot hybridization and DHPLC results were more highly concordant with each other than when either of these methods was compared with RFLP. Conclusions: Although variations may occur, our results indicate that DHPLC and Dot Blot hybridization can be used as reliable screening methods for TP53 codon 72 polymorphism detection, especially in molecular epidemiologic studies, where high throughput methodologies are required.
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to highlight some of the methods of imagetic information representation, reviewing the literature of the area and proposing a model of methodology adapted to Brazilian museums. An elaboration of a methodology of imagetic information representation is developed based on Brazilian characteristics of information treatment in order to adapt it to museums. Finally, spreadsheets that show this methodology are presented.
Resumo:
ARTIOLI, G. G., B. GUALANO, E. FRANCHINI, F. B. SCAGLIUSI, M. TAKESIAN, M. FUCHS, and A. H. LANCHA. Prevalence, Magnitude, and Methods of Rapid Weight Loss among Judo Competitors. Med. Sci. Sports Exerc., Vol. 42, No. 3, pp. 436-442, 2010. Purpose: To identify the prevalence, magnitude, and methods of rapid weight loss among judo competitors. Methods: Athletes (607 males and 215 females; age = 19.3 +/- 5.3 yr, weight = 70 +/- 7.5 kg, height = 170.6 +/- 9.8 cm) completed a previously validated questionnaire developed to evaluate rapid weight loss in judo athletes, which provides a score. The higher the score obtained, the more aggressive the weight loss behaviors. Data were analyzed using descriptive statistics and frequency analyses. Mean scores obtained in the questionnaire were used to compare specific groups of athletes using, when appropriate, Mann-Whitney U-test or general linear model one-way ANOVA followed by Tamhane post hoc test. Results: Eighty-six percent of athletes reported that have already lost weight to compete. When heavyweights are excluded, this percentage rises to 89%. Most athletes reported reductions of up to 5% of body weight (mean +/- SD: 2.5 +/- 2.3%). The most weight ever lost was 2%-5%, whereas a great part of athletes reported reductions of 5%-10% (mean +/- SD: 6 +/- 4%). The number of reductions underwent in a season was 3 +/- 5. The reductions usually occurred within 7 +/- 7 d. Athletes began cutting weight at 12.6 +/- 6.1 yr. No significant differences were found in the score obtained by male versus female athletes as well as by athletes from different weight classes. Elite athletes scored significantly higher in the questionnaire than nonelite. Athletes who began cutting weight earlier also scored higher than those who began later. Conclusions: Rapid weight loss is highly prevalent in judo competitors. The level of aggressiveness in weight management behaviors seems to not be influenced by the gender or by the weight class, but it seems to be influenced by competitive level and by the age at which athletes began cutting weight.
Resumo:
The aim of the present study was to compare and correlate training impulse (TRIMP) estimates proposed by Banister (TRIMP(Banister)), Stagno (TRIMP(Stagno)) and Manzi (TRIMP(Manzi)). The subjects were submitted to an incremental test on cycle ergometer with heart rate and blood lactate concentration measurements. In the second occasion, they performed 30 min. of exercise at the intensity corresponding to maximal lactate steady state, and TRIMP(Banister), TRIMP(Stagno) and TRIMP(Manzi) were calculated. The mean values of TRIMP(Banister) (56.5 +/- 8.2 u.a.) and TRIMP(Stagno) (51.2 +/- 12.4 u.a.) were not different (P > 0.05) and were highly correlated (r = 0.90). Besides this, they presented a good agreement level, which means low bias and relatively narrow limits of agreement. On the other hand, despite highly correlated (r = 0.93), TRIMP(Stagno) and TRIMP(Manzi) (73.4 +/- 17.6 u.a.) were different (P < 0.05), with low agreement level. The TRIMP(Banister) e TRIMP(Manzi) estimates were not different (P = 0.06) and were highly correlated (r = 0.82), but showed low agreement level. Thus, we concluded that the investigated TRIMP methods are not equivalent. In practical terms, it seems prudent monitor the training process assuming only one of the estimates.
Resumo:
Molybdenum and tungsten bimetallic oxides were synthetized according to the following methods: Pechini, coprecipitation and solid state reaction (SSR). After the characterization, those solids were carbureted at programmed temperature. The carburation process was monitored by checking the consumption of carburant hydrocarbon and CO produced. The monitoring process permits to avoid or to diminish the formation of pirolytic carbon.
Resumo:
Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.
Resumo:
Understanding the product`s `end-of-life` is important to reduce the environmental impact of the products` final disposal. When the initial stages of product development consider end-of-life aspects, which can be established by ecodesign (a proactive approach of environmental management that aims to reduce the total environmental impact of products), it becomes easier to close the loop of materials. The `end-of-life` ecodesign methods generally include more than one `end-of-life` strategy. Since product complexity varies substantially, some components, systems or sub-systems are easier to be recycled, reused or remanufactured than others. Remanufacture is an effective way to maintain products in a closed-loop, reducing both environmental impacts and costs of the manufacturing processes. This paper presents some ecodesign methods focused on the integration of different `end-of-life` strategies, with special attention to remanufacturing, given its increasing importance in the international scenario to reduce the life cycle impacts of products. (C) 2009 Elsevier Ltd. All rights reserved.