936 resultados para Coffee growing
Resumo:
The aim of this study was to obtain information about genetic diversity and make some inferences about the relationship of 27 strains of Xylella fastidiosa from different hosts and distinct geographical areas. Single-nucleotide polymorphism (SNP) molecular markers were identified in DNA sequences from 16 distinct regions of the genome of 24 strains of X. fastidiosa from coffee and citrus plants. Among the Brazilian strains, coffee-dependent strains have a greater number of SNPs (10 to 24 SNPs) than the citrus-based strains (2 to 12 SNPs); all the strains were compared with the sequenced strain 9a5c. The identified SNP markers were able to distinguish, for the first time, strains from citrus plants and coffee and showed that strains from coffee present higher genetic diversity than the others. These markers also have proven to be efficient for discriminating strains from the same host obtained from different geographic regions. X. fastidiosa, the causal agent of citrus variegated chlorosis, possesses genetic diversity, and the SNP markers were highly efficient for discriminating genetically close organisms.
Resumo:
This work aimed to study the space behavior of the water erosion in a red-yellow latosol. Then a study was developed in an area with colinon coffee cultivation in an Experimental Farm of Bananal do Norte of INCAPER in Cachoeiro de Itapemirim - ES. Soil samples were obtained from 0,0 to 0,20 m depth in an irregular grid with 109 samples. The analyzed variables were granulometric fractions, erodibility (K), natural erosion potential (PNE), soil loss (A) and erosion risk (RE). All the variables showed space dependency with moderate index of space dependency and similar standard of space distribution. The soil loss is related with the space distribution of the granulometric fractions.
Resumo:
Strains of Xylella fastidiosa, isolated from sweet orange trees (Citrus sinensis) and coffee trees (Coffea arabica) with symptoms of citrus variegated chlorosis and Requeima do Cafe, respectively, were indistinguish able based on repetitive extragenic palindromic polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus PCR assays. These strains were also indistinguishable with a previously described PCR assay that distinguished the citrus strains from all other strains of Xylella fastidiosa. Because we were not able to document any genomic diversity in our collection of Xylella fastidiosa strains isolated from diseased citrus, the observed gradient of increasing disease severity from southern to northern regions of São Paulo State is unlikely due to the presence of significantly different strains of the pathogen in the different regions. When comparisons were made to reference strains of Xylella fastidiosa isolated from other hosts using these methods, four groups were consistently identified consistent with the hosts and regions from which the strains originated: citrus and coffee, grapevine and almond, mulberry, and elm, plum, and oak. Independent results from random amplified polymorphic DNA (RAPD) PCR assays were also consistent with these results; however, two of the primers tested in RAPD-PCR were able to distinguish the coffee and citrus strains. Sequence comparisons of a PCR product amplified from all strains of Xylella fastidiosa confirmed the presence of a CfoI polymorphism that can be used to distinguish the citrus strains from all others. The ability to distinguish Xylella fastidiosa strains from citrus and coffee with a PCR-based assay will be useful in epidemiological and etiological studies of this pathogen.
Resumo:
Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X.fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X.fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X.fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X.fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.
Resumo:
Zinc (Zn) uptake kinetics and root and leaf anatomy were studied in coffee trees grown in nutrient solutions with or without Zn. Leaves and roots were sampled and cuts were made in the medium part of the leaves and in root tips and observed under an optical microscope. Plants grown without Zn showed an increase in root and in root stele diameter. There was also an increase in epidermis thickness and in the cross-sectional area of the cortex and stele due to Zn deficiency, but the diameter of xylem vessels was decreased. An increase in root cortex and stele diameter provided for an increased surface for nutrient uptake. Accordingly, C(min) was decreased from 13.8 to 3.4 mu mol L(-1) and V(max) increased from 0.50 to 2.1 mu mol cm(-2) h(-1) .
Resumo:
Citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS) are two economically important diseases in Brazil caused by the bacterium Xylella fastidiosa. Strains of the bacterium isolated from the two plant hosts are very closely related, and the two diseases share sharpshooter insect vectors. In order to determine if citrus strains of X. fastidiosa could infect coffee and induce CLS disease, plant inoculations were performed. Plants of coffee, Coffea arabica 'Mundo Novo', grafted on Coffea canephora var, robusta 'Apuatao 2258' were mechanically inoculated with triply cloned strains of X. fastidiosa isolated from diseased coffee and citrus. Three months postinoculation, 5 of the 10 plants inoculated with CLS-X. fastidiosa and 1 of the 10 plants inoculated with CVC-X. fastidiosa gave positive enzyme-linked immunosorbent assay (ELISA) and/or polymerase chain reaction (PCR). Eight months postinoculation, another six plants inoculated with CVC-X. fastidiosa gave positive PCR results. The two X. fastidiosa strains were isolated from the inoculated plants and showed the same characteristics as the original clones by microscopy, ELISA, and PCR. None of the plants inoculated with sterile periwinkle wilt (PW) medium as controls gave positive reactions in diagnostic tests, and none developed disease symptoms. Six months postinoculation, seven plants inoculated with CLS-X. fastidiosn and eight inoculated with CVC-X. fastidiosa began to develop characteristic CLS symptoms, including apical and marginal leaf scorch, defoliation, and reductions of internode length, leaf size, and plant height, terminal clusters of small chlorotic and deformed leaves, and lateral shoot dieback. We have demonstrated that X, fastidiosa from citrus plants is pathogenic for coffee plants. This has important consequences for the management of CLS disease and has implications for the origin of citrus variegated chlorosis disease.
Resumo:
The rheological behavior of coffee extract with different water contents (49 to 90%) was studied at a wide range of temperatures (274 to 365 K) using a concentric cylinder rheometer. The flow curves followed different models depending on the concentration and temperature level. Newtonian behavior was observed at high values of water content and temperature, changing to power law as these values were decreased. The Newtonian viscosity as well as the consistency and behavior index could be well correlated by functions simultaneously dependent on temperature and water content. The rheological parameters, together with experimental values of pressure loss in tube flow, were used to calculate friction factors. These showed to be in good agreement with those resulting from classical theoretical and empirical equations, thus confirming the reliability of the rheological measurements.
Resumo:
Xylella fastidiosa causes citrus variegated chlorosis (CVC) disease in Brazil and Pierce's disease of grapevines in the United States. Both of these diseases cause significant production problems in the respective industries. The recent establishment of the glassy-winged sharpshooter in California has radically increased the threat posed by Pierces disease to California viticulture. Populations of this insect reach very high levels in citrus groves in California and move from the orchards into the vineyards, where they acquire inoculum and spread Pierce's disease in the vineyards. Here we show that strains of X. fastidiosa isolated from diseased citrus and coffee in Brazil can incite symptoms of Pierce's disease after mechanical inoculation into seven commercial Vitis vinifera varieties grown in Brazil and California. Thus, any future introduction of the CVC strains of X. fastidiosa into the United States would pose a threat to both the sweet orange and grapevine industries. Previous work has clearly shown that the strains of X. fastidiosa isolated from Pierce's disease- and CVC-affected plants are the most distantly related of all strains in the diverse taxon X. fastidiosa. The ability of citrus strains of X. fastidiosa to incite disease in grapevine is therefore surprising and creates an experimental system with which to dissect mechanisms used by X.,fastidiosa in plant colonization and disease development using the full genome sequence data that has recently become available for both the citrus and grapevine strains of this pathogen.
Resumo:
A new bacterial strain, was isolated from petroleum contaminated soil, identified and named Pseudomonas aeruginosa strain LBI. The new strain produced surface-active rhamnolipids by batch cultivation in a mineral salts medium with soapstock as the sole carbon source. Biosurfactant production increased after nitrogen depletion. The maximum rhamnolipid concentration, 15.9 g/l, was reached when it was incubated in a bioreactor with a constant K(L)a of 169.9 h(-1). (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We investigated the importance of daily free activity in the cage and body weight gain during the recovering of bone structural and mechanical properties in growing rats after hindlimb unloading. Eight-week-old male Wistar rats were randomly divided into control (CG, n=24) and suspended (SG, n=24) groups. Animals from SG underwent a four-week hindlimb unloading period by tail-suspension. Animals from CG and those from SG after release were kept in collective cages and sacrificed at the age of 12, 16 and 20 weeks. Both femurs were removed and its area, bone mineral density (BMD), resistance to failure and stiffness were determined. Four-week hindlimb unloading decreased (p < 0.05) body weight (CG, 373.00 +/- 9.47 vs. SG, 295.86 +/- 9.19 g), BMD (CG, 0.19 +/- 0.01 vs. SG, 0.15 +/- 0.01 g/cm(2)), bone resistance to failure (CG, 147.75 +/- 5.05 vs. SG, 96.40 +/- 5.95 N) and stiffness (CG, 0.38 +/- 0.01 vs. SG, 0.23 +/- 0.02 N/m). Eight weeks of free activity in cage recovered (p > 0.05) the body weight (CG, 472.75 +/- 14.11 vs. SG, 444.75 +/- 18.91 g), BMD (CG, 0.24 +/- 0.01 vs. SG, 0.22 +/- 0.01 g/cm(2)), bone resistance to failure (CG, 195.73 +/- 10.06 vs. SG, 178.45 +/- 8.48 N) and stiffness (CG, 0.56 +/- 0.02 vs. SG, 0.47 +/- 0.03 N/m) of SG animals. Body weight correlated strongly with bone structural and mechanical properties (p < 0.0001). In conclusion, free activity in the cage associated with body weight gain restored bone structural and mechanical properties in growing rats after hindlimb unloading.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fruit-eating by fishes represents an ancient (perhaps Paleozoic) interaction increasingly regarded as important for seed dispersal (ichthyochory) in tropical and temperate ecosystems. Most of the more than 275 known frugivorous species belong to the mainly Neotropical Characiformes (pacus, piranhas) and Siluriformes (catfishes), but cypriniforms (carps, minnows) are more important in the Holarctic and Indomalayan regions. Frugivores are among the most abundant fishes in Neotropical floodplains where they eat the fruits of a wide variety of trees and shrubs. By consuming fruits, fishes gain access to rich sources of carbohydrates, lipids and proteins and act as either seed predators or seed dispersers. With their often high mobility, large size, and great longevity, fruit-eating fishes can play important roles as seed dispersers and exert strong influences on local plant-recruitment dynamics and regional biodiversity. Recent feeding experiments focused on seed traits after gut passage support the idea that fishes are major seed dispersers in floodplain and riparian forests. Overfishing, damming, deforestation and logging potentially diminish ichthyochory and require immediate attention to ameliorate their effects. Much exciting work remains in terms of fish and plant adaptations to ichthyochory, dispersal regimes involving fishes in different ecosystems, and increased use of nondestructive methods such as stomach lavage, stable isotopes, genetic analyses and radio transmitters to determine fish diets and movements. (C) 2011 Elsevier Masson SAS. All rights reserved.