922 resultados para Chance-constrained programming
Resumo:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.
Resumo:
The problem of determining a maximum matching or whether there exists a perfect matching, is very common in a large variety of applications and as been extensively studied in graph theory. In this paper we start to introduce a characterisation of a family of graphs for which its stability number is determined by convex quadratic programming. The main results connected with the recognition of this family of graphs are also introduced. It follows a necessary and sufficient condition which characterise a graph with a perfect matching and an algorithmic strategy, based on the determination of the stability number of line graphs, by convex quadratic programming, applied to the determination of a perfect matching. A numerical example for the recognition of graphs with a perfect matching is described. Finally, the above algorithmic strategy is extended to the determination of a maximum matching of an arbitrary graph and some related results are presented.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.
Resumo:
The design phase of B-spline neural networks represents a very high computational task. For this purpose, heuristics have been developed, but have been shown to be dependent on the initial conditions employed. In this paper a new technique, Bacterial Programming, is proposed, whose principles are based on the replication of the microbial evolution phenomenon. The performance of this approach is illustrated and compared with existing alternatives.
Resumo:
Discrete optimization problems are very difficult to solve, even if the dimantion is small. For most of them the problem of finding an ε-approximate solution is already NP-hard.
Resumo:
In this work we develop a methodology for the economic evaluation of soil tillage technologies, in a risky environment, and to capture the influence of farmer behaviour on his technology choice. The model has short-term activities, that change with the type of year, and long-term activities, in which sets of traction investment activities are included. Although these activities do not change with the type of year, they lead to different availability of resources for each type of year, since the same tractor has different available fieldwork days under different weather conditions. We prove that the model is sensitive to the greater income variability resulting from the use of alternative technologies and to the balance between income and risk, accounting for the probability of occurrence of each state of nature and giving an investment solution that considers the best production plan for each type of year. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Tese de doutoramento, Ciências da Vida, do Mar, da Terra e do Ambiente (Nutrição), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Tese de doutoramento, Ciências Biomédicas (Biologia do Desenvolvimento), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Tese de doutoramento, Informática (Ciências da Computação), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
Thesis (Ph.D.)--University of Washington, 2015
Resumo:
This work describes how genetic programming is applied to evolving controllers for the minimum time swing up and inverted balance tasks of the continuous state and action: limited torque acrobot. The best swing-up controller is able to swing the acrobot up to a position very close to the inverted ‘handstand’ position in a very short time, shorter than that of Coulom (2004), who applied the same constraints on the applied torque values, and to take only slightly longer than the approach by Lai et al. (2009) where far larger torque values were allowed. The best balance controller is able to balance the acrobot in the inverted position when starting from the balance position for the length of time used in the fitness function in all runs; furthermore, 47 out of 50 of the runs evolve controllers able to maintain the balance position for an extended period, an improvement on the balance controllers generated by Dracopoulos and Nichols (2012), which this paper is extended from. The most successful balance controller is also able to balance the acrobot when starting from a small offset from the balance position for this extended period.
Resumo:
Distribution systems are the first volunteers experiencing the benefits of smart grids. The smart grid concept impacts the internal legislation and standards in grid-connected and isolated distribution systems. Demand side management, the main feature of smart grids, acquires clear meaning in low voltage distribution systems. In these networks, various coordination procedures are required between domestic, commercial and industrial consumers, producers and the system operator. Obviously, the technical basis for bidirectional communication is the prerequisite of developing such a coordination procedure. The main coordination is required when the operator tries to dispatch the producers according to their own preferences without neglecting its inherent responsibility. Maintenance decisions are first determined by generating companies, and then the operator has to check and probably modify them for final approval. In this paper the generation scheduling from the viewpoint of a distribution system operator (DSO) is formulated. The traditional task of the DSO is securing network reliability and quality. The effectiveness of the proposed method is assessed by applying it to a 6-bus and 9-bus distribution system.
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.