978 resultados para Cardiovascular system - Diseases - Thesis
Resumo:
Background: False-negative interpretations of do-butamine stress echocardiography (DSE) may be associated with reduced wall stress. using measurements of contraction, we sought whether these segments were actually ischemic but unrecognized or showed normal contraction. Methods. We studied 48 patients (29 men; mean age 60 +/- 10 years) with normal regional function on the basis of standard qualitative interpretation of DSE. At coronary angiography within. 6 months of DSE, 32 were identified as having true-negative and 16 as having false-negative results of DSE. Three apical views were used to measure regional function with color Doppler tissue, integrated backscatter, and strain rate imaging. Cyclic variation of integrated backscatter was measured in 16 segments, and strain rate and peak systolic strain was calculated in 6 walls at rest and peak stress. Results. Segments with false-negative results of DSE were divided into 2 groups with and without low wall stress according to previously published cut-off values. Age, sex, left ventricular mass, left ventricular geometric pattern, and peak workload were not significantly different between patients with true and false-negative results of DSE. Importantly, no significant differences in cyclic variation and strain parameters at rest and peak stress were found among segments with true-and false-negative results of DSE with and without low wall stress. Stenosis severity had no influence on cyclic variation and strain parameters at peak stress. Conclusions: False-negative results of DSE reflect lack of ischemia rather than underinterpretation of regional left ventricular function. Quantitative markers are unlikely to increase the sensitivity of DSE.
Resumo:
OBJECTIVES This study was designed to predict the response and prognosis after cardiac resynchronization therapy (CRT) in patients with end-stage heart failure (HF). BACKGROUND Cardiac resynchronization therapy improves HF symptoms, exercise capacity, and left ventricular (LV) function. Because not all patients respond, preimplantation identification of responders is needed. In the present study, response to CRT was predicted by the presence of LV dyssynchrony assessed by tissue Doppler imaging. Moreover, the prognostic value of LV dyssynchrony in patients undergoing CRT was assessed. METHODS Eighty-five patients with end-stage HF, QRS duration >120 ins, and left bundle-branch block were evaluated by tissue Doppler imaging before CRT. At baseline and six months follow-up, New York Heart Association functional class, quality of life and 6-min walking distance, LV volumes, and LV ejection fraction were determined. Events (death, hospitalization for decompensated HF) were obtained during one-year follow-up. RESULTS Responders (74%) and nonresponders (26%) had comparable baseline characteristics, except for a larger dyssynchrony in responders (87 +/- 49 ms vs. 35 +/- 20 ms, p < 0.01). Receiver-operator characteristic curve analysis demonstrated that an optimal cutoff value of 65 ms for LV dyssynchrony yielded a sensitivity and specificity of 80% to predict clinical improvement and of 92% to predict LV reverse remodeling. Patients with dyssynchrony :65 ms had an excellent prognosis (6% event rate) after CRT as compared with a 50% event rate in patients with dyssynchrony <65 ins (p < 0.001). CONCLUSIONS Patients with LV dyssynchrony greater than or equal to65 ms respond to CRT and have an excellent prognosis after CRT. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
No Abstract
Resumo:
Background: Brachial artery reactivity (BAR), carotid intima-media thickness (IMT), and applanation tonometry for evaluation of total arterial compliance may provide information about preclinical vascular disease. We sought to determine whether these tests could be used to identify patients with coronary artery disease (CAD) without being influenced by their ability to identify those at risk ford CAD developing. Methods: We studied 100 patients and compared 3 groups: 35 patients with known CAD; 34 patients with symptoms and risk factors but no CAD identified by stress echocardiography (risk group); and 31 control subjects. BAR and IMT were measured using standard methods, and total arterial compliance was calculated by the pulse-pressure method from simultaneous radial applanation tonometry and pulsed wave Doppler of the left ventricular outflow. Ischemia was identified as a new or worsening wall-motion abnormality induced by stress. Results: In a comparison between the control subjects and patients either at risk for developing CAD or with CAD, the predictors of risk for CAD were: age (P = .01); smoking history (P = .002); hypercholesterolemia (P = .002); and hypertension (P = .004) (model R = 0.82; P = .0001). The independent predictors of CAD were: IMT (P = .001); BAR (P = .04); sex (P = .005); and hypertension (P = .005) (model R = 0.80; P = .0001). Conclusion: IMT, BAR, and traditional cardiovascular risk factors appear to identify patients at risk for CAD developing. However, only IMT was significantly different between patients at risk for developing CAD and those with overt CAD.
Resumo:
We sought to improve the feasibility of strain rate imaging (SRI) during dobutamine stress echocardiography (DSE) in 56 subjects at low risk of coronary disease. The impact of several SRI changes during acquisition were studied, including: (1) changing from fundamental to harmonic imaging; (2) parallel beam-forming; (3) alteration of spatial resolution and (4) narrow sector acquisition. We assessed SR signal quality, a quantitative measure of signal noise and measurements of SRI. Of 1462 segments evaluated, 6% were uninterpretable at rest and 8% at peak stress. Signal quality was optimised by increasing temporal (p = 0.01) and spatial resolution (p<0.0001 vs. baseline imaging) at rest and peak. Increasing spatial resolution also minimised signal noise (p<0.0001). Inter-observer variability of time to peak SR and peak SR were less with high temporal and spatial resolution. SRI quality can be improved with harmonic imaging and higher temporal resolution but optimisation of spatial resolution is critical. (C) 2004 World Federation for Ultrasound in Medicine Biology.
Resumo:
OBJECTIVES We sought to determine if a hypertensive response to exercise (HRE) is associated with myocardial changes consistent with early hypertensive heart disease. BACKGROUND An HRE predicts the development of chronic hypertension (HT) and may reflect a preclinical stage of HT. METHODS Patients with a normal left ventricular (LV) ejection fraction and a negative stress test were recruited into three matched groups: 41 patients (age 56 +/- 10 years) with HRE (210/105 mm Hg in men; > 190/105 in women), comprising 22 patients with (HT+) and 19 without resting hypertension (HT-); and 17 matched control subjects without HRE. Long-axis function was determined by measurement of the strain rate (SR), peak systolic strain, and cyclic variation (CV) of integrated backscatter in three apical views. RESULTS An HRE was not associated with significant differences in LV mass index. Exercise performance and diastolic function were reduced in HRE(HT+) patients, but similar in HRE(HT-) patients and controls. Systolic dysfunction (peak systolic strain, SR, and CV) was significantly reduced in HRE patients (p < 0.001 for all). These reductions were equally apparent in patients with and without a history of resting HT (p = NS) and were independent of LV mass index and blood pressure (p < 0.01). CONCLUSIONS An HRE is associated with subtle systolic dysfunction, even in the absence of resting HT. These changes occur before the development of LV hypertrophy or detectable diastolic dysfunction and likely represent early hypertensive heart disease. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
Background: Postsystolic thickening (PST) of ischemic myocardial segments has been reported to account for the characteristic heterogeneity or regional asynchrony of myocardial wall motion during acute ischemia. Hypothesis: Postsystolic thickening detected by Doppler myocardial imaging (DMI) could be a useful clinical index of myocardial viability or peri-infarction viability in patients with myocardial infarction (MI). Methods: Doppler myocardial imaging was recorded at each stage of a standard dobutamine stress echocardiogram (DSE) in 20 patients (16 male, 60 +/- 13 years) with an NIT in the territory of the left anterior descending artery. Myocardial velocity data were measured in the interventricular septum and apical inferior segment of the MI territory. Postsystolic thickening was identified if the absolute velocity of PST was higher than peak systolic velocity in the presence of either a resting PST > 2.0 cm/s or if PST doubled at low-dose dobutamine infusion. Results: Doppler myocardial imaging data could be analyzed in 38 ischemic segments (95%), and PST was observed in 21 segments (55%), including 3 segments showing PST only at low-dose dobutamine infusion. There was no significant difference of baseline wall motion score index (2.1 +/- 0.3 vs. 2.1 +/- 0.6, p = 0.77) or peak systolic velocity (1.1 +/- 1.1 vs. 1.9 +/- 2.0 cm/s, p = 0.05) between segments with and without PST Peri-infarction ischemia or viability during DSE was more frequently observed in segments with PST than in those without (86 vs. 24%, p < 0.05). The sensitivity and specificity of PST for prediction of peri-infarction viability or ischemia was 82 and 81%, respectively. Conclusions: Postsystolic thickening in the infarct territory detected by DMI is closely related with peri-infarction ischemia or viability at DSE.
Resumo:
This study sought the ability of strain rate imaging to detect subclinical left ventricular dysfunction, as evidenced by reduced contractile reserve (CR) in 32 asymptomatic patients with isolated severe mitral regurgitation. Compared with CR- patients (n = 10), CR+ patients (n = 22) had significantly higher end-systolic strain and peak systolic strain rate, but these parameters were not significantly different between CR+ patients and matched normal controls. (C) 2004 by Excerpta Medica, Inc.
Resumo:
Subclinical left ventricular (W) dysfunction may be identified by reduced longitudinal contraction. We sought to define the effects of subclinical LV dysfunction on radial contractility in 53 patients with diabetes mellitus with no LV hypertrophy, normal ejection fraction and no ischaemia as assessed by dobutamine echocardiography, in comparison with age-matched controls. Radial peak myocardial systolic velocity (S-m) and early diastolic velocity (E-m), strain and strain rate were measured in the mid-posterior and mid-anteroseptal walls in parasternal views and each variable was averaged for individual patients (radial contractility). These variables were also measured in the mid-posterior and mid-anteroseptal walls in the apical long-axis view and each variable was averaged for individual patients (longitudinal contractility). Mean radial S-m, strain and strain rate were significantly increased in diabetic patients (2.9+/-0.6 cm/s, 28+/-5% and 1.8+/-0.4 s(-1) respectively) compared with controls (2.4+/-0.7 cm/s, 23+/-4% and 1.6+/-0.3 s(-1) respectively; all P<0.001), but there was no difference in E-m (3.3&PLUSMN;1.2 compared with 3.1&PLUSMN;1.1 cm/s, P=not significant). In contrast, longitudinal S-m, E-m, strain and strain rate were significantly lower in diabetic patients (3.6&PLUSMN;1.1 cm/s, 4.3&PLUSMN;1.6 cm/s, 21&PLUSMN;4% and 1.6&PLUSMN;0.3 s(-1) respectively) than in controls (4.3&PLUSMN;1.0 cm/s, 5.7&PLUSMN;2.3 cm/s, 26&PLUSMN;4% and 1.9&PLUSMN;0.3 s(-1) respectively; all P<0.00 1). Thus radial contractility appears to compensate for reduced longitudinal contractility in subclinical LV dysfunction occurring in the absence of ischaemia or LV hypertrophy.
Resumo:
OBJECTIVES We sought to determine whether assessment of left ventricular (LV) function with real-time (RT) three-dimensional echocardiography (3DE) could reduce the variation of sequential LV measurements and provide greater accuracy than two-dimensional echocardiography (2DE). BACKGROUND Real-time 3DE has become feasible as a standard clinical tool, but its accuracy for LV assessment has not been validated. METHODS Unselected patients (n = 50; 41 men; age, 64 +/- 8 years) presenting for evaluation of LV function were studied with 2DE and RT-3DE. Test-retest variation was performed by a complete restudy by a separate sonographer within 1 h without alteration of hemodynamics or therapy. Magnetic resonance imaging (MRI) images were obtained during a breath-hold, and measurements were made off-line. RESULTS The test-retest variation showed similar measurements for volumes but wider scatter of LV mass measurements with M-mode and 2DE than 3DE. The average MRI end-diastolic volume was 172 +/- 53 ml; LV volumes were underestimated by 2DE (mean difference, -54 +/- 33; p < 0.01) but only slightly by RT-3DE (-4 +/- 29; p = 0.31). Similarly, end-systolic volume by MRI (91 +/- 53 ml) was underestimated by 2DE (mean difference, -28 +/- 28; p < 0.01) and by RT-3DE (mean difference, -3 +/- 18; p = 0.23). Ejection fraction by MRI was similar by 2DE (p = 0.76) and RT-3DE (p = 0.74). Left ventricular mass (183 +/- 50 g) was overestimated by M-mode (mean difference, 68 +/- 86 g; p < 0.01) and 2DE (16 +/- 57; p = 0.04) but not RT-3DE (0 +/- 38 g; p = 0.94). There was good inter- and intra-observer correlation between RT-3DE by two sonographers for volumes, ejection fraction, and mass. CONCLUSIONS Real-time 3DE is a feasible approach to reduce test-retest variation of LV volume, ejection fraction, and mass measurements in follow-up LV assessment in daily practice. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
Background Diastolic heart failure (DHF) is characterized by dyspnea due to increased left ventricular (LV) filling pressures during stress. We sought the relationship of exercise-induced increases in B-type natriuretic peptide (BNP) to LV filling pressures and parameters of cardiovascular performance in suspected DHF. Methods Twenty-six treated hypertensive patients with suspected DHF (exertional dyspnea, LV ejection fraction >50%, and diastolic dysfunction) underwent maximal exercise echocardiography using the Bruce protocol. BNP, transmitral Doppler, and tissue Doppler for systolic (So) and early (Ea) and late (Aa) diastolic mitral annular velocities were obtained at rest and peak stress. LV filling pressures were estimated with E/Ea ratios. Results Resting BNP correlated with resting pulse pressure (r=0.45, P=0.02). Maximal exercise performance (4.6 +/- 2.5min) was limited by dyspnea. Blood pressure increased with exercise (from 143 +/- 19/88 +/- 8 to 191 +/- 22/90 +/- 10 mm Hg); 13 patients (50%) had a hypertensive response. Peak exercise BNP correlated with peak transmitral E velocity (r = 0.41, P <.05) and peak heart rate (r = -0.40, P <.05). BNP increased with exercise (from 48 57 to 74 97 pg/mL, P =.007), and the increment of BNP with exercise was associated with maximal workload and peak exercise So, Ea, and Aa (P <.01 for all). Filling pressures, approximated by lateral E/Ea ratio, increased with exercise (7.7 +/- 2.0 to 10.0 +/- 4.8, P <.01). BNP was higher in patients with possibly elevated filling pressures at peak exercise (E/Ea >10) compared to those with normal pressures (123 +/- 124 vs 45 +/- 71 pg/mL, P =.027). Conclusions Augmentation of BNP with exercise in hypertensive patients with suspected DHF is associated with better exercise capacity, LV systolic and diastolic function, and left atrial function. Peak exercise BNP levels may identify exercise-induced elevation of filling pressures in DHF.
Resumo:
The assessment of left ventricular (LV) dysfunction has become the most frequent indication for echocardiography, a growth that has been driven by the epidemic of heart failure. The value of echocardiography for assessing LV dysfunction is unquestionable, the quantification of both LV systolic and diastolic dysfunction being a reliable indicator of mortality. 1,2 Nonetheless, whereas the ejection fraction and diastolic assessment are important clinical parameters, they are highly dependent on loading and may produce abnormal results under unusual loading conditions. Moreover, in a number of situations where the LV is evaluated, although the overall function is an important finding, the referring clinician is really requesting an assessment of the nature of the underlying myocardial tissue (Table 1). Indeed, in some situations (eg, among family members of patients with a cardiomyopathy) questions arise about the presence of pathology despite the presence of normal ventricular function. Traditionally, it has been difficult to obtain this information because of the lack of sufficiently sensitive parameters, but a number of new developments have shown such success in this area that the clinical application of tools to assess the myocardium in routine practice appears finally to be a realistic proposition.
Resumo:
Purpose of review Heart failure and diabetes mellitus are frequently associated, and diabetes appears to potentiate the clinical presentation of heart failure related to other causes. The purpose of this review is to examine recent advances in the application of tissue Doppler imaging for the assessment of diabetic heart disease. Recent findings Recent studies have documented that both myocardial systolic and diastolic abnormalities can be identified in apparently healthy patients with diabetes and no overt cardiac dysfunction. Interestingly, these are disturbances of longitudinal function, with compensatory increases of radial function-suggesting primary involvement of the subendocardium, which is a hallmark of myocardial ischemia. Despite this, there is limited evidence that diabetic microangiopathy is responsible-with reduced myocardial blood volume rather than reduced resting flow, and at least some evidence suggesting a normal increment of tissue velocity with stress. Finally, a few correlative studies have shown association of diabetic myocardial disease with poor glycemic control, while angiotensin converting enzyme inhibition may be protective. Summary Tissue Doppler imaging (and the related technique of strain rate imaging) appears to be extremely effective for the identification of subclinical LV dysfunction in diabetic patients It is hoped that the recognition of this condition will prompt specific therapy to prevent the development of overt LV dysfunction.
Resumo:
The extent of abnormality in patients with positive do-butamine echocardiography (DE) is predictive of risk, but the wall motion score (WMS) has low concordance among observers. We sought whether quantifying the extent of abnormal wall motion using tissue Doppler (TD) could guide risk assessment in patients with abnormal DE in 576 patients with known or suspected coronary artery disease; standard DE was combined with color TD imaging at peak dose. WMS was assessed by an expert observer and studies were identified as abnormal in the presence of 2:1 segments with resting or stress-induced wall motion abnormalities. Patients with abnormal DE had peak systolic velocity measured in each segment. Tissue tracking was used to measure myocardial displacement. Follow-up for death or infarction was per-formed after. 16 +/- 12 months. Of 251 patients with abnormal DE, 22 patients died (20 from cardiac causes) and 7 had nonfatal myocardial infarctionis. The average WMS in patients with events was 1.8 +/- 0.5, compared with 1.7 +/- 0.5 in patients without events (p = NS). The average systolic velocity in patients with events was 4.9 +/- 1.7 cm/s and 6.4 +/- 6.5 cm/s in the patients without events (p <0.001). The average tissue tracking in patients with events was 4.5 +/- 1.5 mm and was significant. (5.7 +/- 3.1 mm),in those,without events (p <0.001). Thus, TD is an alternative to WMS for quantifying the total extent of abnormal left ventricular function-at DE, and appears to be superior for predicting adverse outcomes. (C) 2004 by Excerpta Medica, Inc.