1000 resultados para Cana-de-açúcar - Condições hidricas
Resumo:
Unidade 4
Resumo:
Ilustração. Dimensão: 1324x1494. Tamanho: 118Kb.
Resumo:
Ilustração. Dimensão: 1657x1482. Tamanho: 276Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina Tecnologia de Produção de Açúcar. Fluxograma. Dimensão: 1442x504. Tamanho: 954Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Ilustração. Dimensão: 1423x807. Tamanho: 114Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Ilustração. Dimensão: 1510x395. Tamanho: 57Kb.
Resumo:
Ilustração. Dimensão: 2553x1070. Tamanho: 236Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Ilustração. Dimensão: 6759x3378. Tamanho: 1.217 Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Ilustração. Dimensão: 4027x2989. Tamanho: 650Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Fluxograma. Dimensão: 1351x810. Tamanho: 1.064Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Ilustração. Dimensão: 1831x807. Tamanho: 131Kb.
Resumo:
PEDRO, Edilson da Silva. Estratégias para a organização da pesquisa em cana-de-açúcar: uma análise de governança em sistemas de inovação. 2008. 226f. Tese (Doutorado em Política Científica e Tecnológica) - Universidade Estadual de Campinas, Campinas, 2008.
Resumo:
The genome of all organisms constantly suffers the influence of mutagenic factors from endogenous and/or exogenous origin, which may result in damage for the genome. In order to keep the genome integrity there are different DNA repair pathway to detect and correct these lesions. In relation to the plants as being sessile organisms, they are exposed to this damage frequently. The Base Excision DNA Repair (BER) is responsible to detect and repair oxidative lesions. Previous work in sugarcane identified two sequences that were homologous to Arabidopsis thaliana: ScARP1 ScARP3. These two sequences were homologous to AP endonuclease from BER pathway. Then, the aim of this work was to characterize these two sequence using different approaches: phylogenetic analysis, in silico protein organelle localization and by Nicotiana tabacum transgenic plants with overexpression cassette. The in silico data obtained showed a duplication of this sequence in sugarcane and Poaceae probably by a WGD event. Furthermore, in silico analysis showed a new localization in nuclei for ScARP1 protein. The data obtained with transgenic plants showed a change in development and morphology. Transgenic plants had slow development when compared to plants not transformed. Then, these results allowed us to understand better the potential role of this sequence in sugarcane and in plants in general. More work is important to be done in order to confirm the protein localization and protein characterization for ScARP1 and ScARP3
Resumo:
The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures
Resumo:
The flowering is a physiological process that it is vital for plants. This physiological process has been well studied in the plant model Arabidopsis, but in sugarcane this process is not well known. The transition of the shoot apical meristem from vegetative to flowering is a critical factor for plant development. At Brazil northeastern region, the transition to flowering in sugarcane has an important effect as it may reduce up to 60% its production. This is a consequence of the sugar translocation from stalks to the shoot apical meristem which is necessary during the flowering process. Therefore, the aim of this work was to explore and analyze cDNAs previously identified using subtractive cDNA libraries. The results showed that these cDNAs showed differential expression profile in varieties of sugarcane (early x late flowering). The in silico analysis suggested that these cDNAs had homology to calmodulin, NAC transcription factor and phosphatidylinositol, a SEC14, which were described in the literature as having a role in the process of floral development. To better understand the role of the cDNA homologous to calmodulin, tobacco plants were transformed with overexpression cassettes in sense and antissense orientation. Plants overexpressing the cassette in sense orientation did not flowered, while plants overexpressing the cassette in the antissense orientation produced flowers. The data obtained in this study suggested the possible role from CAM sequence, SEC14 and NAC in the induction/floral development pathway in sugarcane, this is the first study in order to analyze these genes in the sugarcane flowering process.