998 resultados para Bond cycles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental research addressing the effects of concrete composition and strength on anchorage bond behavior of prestressing reinforcement is presented to clarify the effect of material properties that have appeared contradictory in previous literature. Bond stresses and anchorage lengths have been obtained in twelve concrete mixes made up of different cement contents (C) – 350 to 500 kg/m3 – and water/cement (w/c) ratios – 0.3 to 0.5 – with compressive strength at 24 h ranging from 24 to 55 MPa. A testing technique based on measuring the prestressing force in specimens with different embedment lengths has been used. The results show that anchorage length increases when w/c increases, more significantly when C is higher; the effect of C reveals different trends based on w/c. The obtained anchorage bond stresses are greater for higher concrete compressive strength, and their average ratio of 1.45 with respect to transmission bond stresses implies a potential bond capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this research is to use finite element analysis (FEA) to quantify the effect of the sample shape and the imperfections induced during the manufacturing process of samples on the bond strength and modes of failure of dental adhesive systems through microtensile test. Using the FEA prediction for individual parameters effect, estimation of expected variation and spread of the microtensile bond strength results for different sample geometries is made. Methods: The estimated stress distributions for three different sample shapes, hourglass, stick and dumbbell predicted by FEA are used to predict the strength for different fracture modes. Parameters such as the adhesive thickness, uneven interface of the adhesive and composite and dentin, misalignment of axis of loading, the existence of flaws such as induced cracks during shaping the samples or bubbles created during application of the adhesive are considered. Microtensile experiments are performed simultaneously to measure bond strength and modes of failure. These are compared with the FEA results. Results: The relative bonding strength and its standard deviation for the specimens with different geometries measured through the microtensile tests confirm the findings of the FEA. The hourglass shape samples show lower tensile bond strength and standard deviation compared to the stick and dumbbell shape samples. ANOVA analysis confirms no significant difference between dumbbell and stick geometry results, and major differences of these two geometries compared to hourglass shape measured values. Induced flaws in the adhesive and misalignment of the angle of application of load have significant effect on the microtensile bond strength. Using adhesive with higher modulus the differences between the bond strength of the three sample geometries increase. Significance: The result of the research clarifies the importance of the sample geometry chosen in measuring the bond strength. It quantifies the effect of the imperfections on the bond strength for each of the sample geometries through a systematic and all embracing study. The results explain the reasons of the large spread of the microtensile test results reported by various researchers working in different labs and the need for standardization of the test method and sample shape used in evaluation of the dentin-adhesive bonding system. © 2007 Academy of Dental Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the background rationale and key findings for a model-based study of supercritical waste heat recovery organic Rankine cycles. The paper’s objective is to cover the necessary groundwork to facilitate the future operation of a thermodynamic organic Rankine cycle model under realistic thermodynamic boundary conditions for performance optimisation of organic Rankine cycles. This involves determining the type of power cycle for organic Rankine cycles, the circuit configuration and suitable boundary conditions. The study focuses on multiple heat sources from vehicles but the findings are generally applicable, with careful consideration, to any waste heat recovery system. This paper introduces waste heat recovery and discusses the general merits of organic fluids versus water and supercritical operation versus subcritical operation from a theoretical perspective and, where possible, from a practical perspective. The benefits of regeneration are investigated from an efficiency perspective for selected subcritical and supercritical conditions. A simulation model is described with an introduction to some general Rankine cycle boundary conditions. The paper describes the analysis of real hybrid vehicle data from several driving cycles and its manipulation to represent the thermal inertia for model heat input boundary conditions. Basic theory suggests that selecting the operating pressures and temperatures to maximise the Rankine cycle performance is relatively straightforward. However, it was found that this may not be the case for an organic Rankine cycle operating in a vehicle. When operating in a driving cycle, the available heat and its quality can vary with the power output and between heat sources. For example, the available coolant heat does not vary much with the load, whereas the quantity and quality of the exhaust heat varies considerably. The key objective for operation in the vehicle is optimum utilisation of the available heat by delivering the maximum work out. The fluid selection process and the presentation and analysis of the final results of the simulation work on organic Rankine cycles are the subjects of two future publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin chains are promising media for short-haul quantum communication. Their usefulness is manifested in all those situations where stationary information carriers are involved. In the majority of the communication schemes relying on quantum spin chains, the latter are assumed to be finite in length, with well-addressable end-chain spins. In this paper we propose that such a configuration could actually be achieved by a mechanism that is able to effectively cut a spin ring through the insertion of bond defects. We then show how suitable physical quantities can be identified as figures of merit for the effectiveness of the cut. We find that, even for modest strengths of the bond defect, a ring is effectively cut at the defect site. In turn, this has important effects on the amount of correlations shared by the spins across the resulting chain, which we study by means of a scattering-based mechanism of a clear physical interpretation. © 2013 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of NOx storage and reduction over 1.5 wt% Pt/20 wt% KNO3/K2Ti8O17 and 1.5 wt% Pt/K2Ti8O17 catalysts has been investigated using combined fast transient kinetic switching and isotopically labelled (NO)-N-15 at 350 degrees C. The evolution of product N-2 has revealed two significant peaks during 60 s lean/1.3 s rich switches. It also found that the presence of CO2 in the feed affects the release of N-2 in the second peak. Regardless of the presence/absence of water in the feed, only one peak of N-2 was observed in the absence of CO2. Gas-phase NH3 was not observed in any of the experiments. However, in the presence of CO2 the results obtained from in situ DRIFTS-MS analysis showed that isocyanate species are formed and stored during the rich cycles, probably from the reaction between NOx and CO, in which CO was formed via the reverse water-gas shift reaction. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential use of Irish-grown Sitka spruce for cross-laminated timber (CLT) manufacture is investigated as this would present new opportunities and novel products for Irish timber in the home and export markets. CLT is a prefabricated multilayer engineered wood product made of at least three orthogonally bonded layers of timber. In order to increase rigidity and stability, successive layers of boards are placed cross-wise to form a solid timber panel. Load-bearing CLT wall and floor panels are easily assembled on site to form multi-storey buildings. This improves construction and project delivery time, reduces costs,
and maximises efficiency on all levels.

The paper addresses the quality of the interface bond between the laminations making up the panels, which is of fundamental importance to the load bearing capacity. Therefore, shear tests were carried out on nine test bars of three glue lines each. Moreover, delamination tests were performed on samples subjected to accelerated aging, in order to assess the durability of bonds subjected to severe environmental conditions. In addition, this paper gives an indication on thickness tolerances of planed Irish Sitka spruce lamellas, which is likely to be a critical factor for bonding quality and adhesive selection. The test results of bond quality presented in this study were within requirements of prEN 16351:2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study on the bond behaviour of FRP-concrete bonded joints under static and dynamic loadings, by developing a meso-scale finite element model using the K&C concrete damage model in LS-DYNA. A significant number of single shear experiments under static pull-off loading were modelled with an extensive parametric study covering key factors in the K&C model, including the crack band width, the compressive fracture energy and the shear dilatation factor. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of mesh objectivity, the load-carrying capacity and the local bond-slip behaviour, provided that proper consideration is given to the selection of crack band width and shear dilatation factor. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor (DIF) for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A catalyst system comprising 10 mol % (Pd(OAc) and 20 mol % PPh3 effects the cyclisation of aryl halides onto proximate alkenes via 5-, 6-, and 7-exo-trig, and 7-endo-trig processes giving a variety of bridged-ring carbo- and hetero-cycles in excellent yield. Double bond isomerisation in the product is rarely encountered and may be suppressed by the addition of Tl(1) salts. One example of diastereospecific bis-cyclisation is given and the crystal structure of 1-aza-2-sulphonyl-3,4-benzobicyclo[3.2.1]nona-6-ene is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainability can be described as having three interlinked strands, known as the ‘trias energetica’, without which resilience is difficult to achieve. These strands are environmental, social and economic: and if taken as indicators, the suburbs of North Belfast are very poorly performing indeed. Places such as Ligoneal and Glen Cairn have poor housing stock energetically, and also little economic activity. This paper describes propositional work completed by Queens University and Belfast City Council as part of the UK’s Technology Strategy Board’s Future Cities Programme, which aimed to develop new synergies in these neighbourhoods by the insertion of closed cycle economies.

By utilising a research by design methodology, the paper develops a process-based and phased design to develop a new emergent form to these neighbourhoods, one in which new productive systems are embedded into the city, at a small-scales. These include a peak-load hydro-electric project in Ligoneal; a productive landscape in Glen Cairn and a city-wide energy refurbishment utilising neighbourhood waste streams.

These designs allow for a roadmap for development to be created that could change the modus operandi of an area over a relatively short period of time, and show that even modest investments of productive technologies at a local scale could fundamentally change the form and the economic and environmental operation of the city in the future, and create a new resilient city, one that can be less externally dependent and more socially just.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By utilising a research by design methodology, the paper develops a process-based and phased design to develop a new emergent form to these neighbourhoods, one in which new productive systems are embedded into the city, at a small-scales. These include a peak-load hydro-electric project in Ligoneal; a productive landscape in Glen Cairn and a city-wide energy refurbishment utilising neighbourhood waste streams.

The three projects illustrate different ways in which place-based solutions can enact urban transformation through a process of rigorous visualisation of process, and its attendant changes in content and form of the neighbourhood, These designs, based around a process-based strategy plan, allow for a roadmap for development to be created that could change the modus operandi of an area over a relatively short period of time,. The paper demonstrates that even modest investments of productive technologies at a local scale can fundamentally change the form and the economic and environmental operation of the city in the future, and create a new resilient city, one that can have resilience built-in. This resilience allows the neighbourhood to be less externally dependent on resources, economically active and more socially just.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of externally bonding fiber-reinforced polymer (FRP) composites has become very popular worldwide for retrofitting existing reinforced concrete (RC) structures. Debonding of FRP from the concrete substrate is a typical failure mode in such strengthened structures. The bond behavior between FRP and concrete thus plays a crucial role in these structures. The FRP-to-concrete bond behavior has been extensively investigated experimentally, commonly using a single or double shear test of the FRP-to-concrete bonded joint. Comparatively, much less research has been concerned with numerical simulation, chiefly due to difficulties in the accurate modeling of the complex behavior of concrete. This paper presents a simple but robust finite-element (FE) model for simulating the bond behavior in the entire debonding process for the single shear test. A concrete damage plasticity model is proposed to capture the concrete-to-FRP bond behavior. Numerical results are in close agreement with test data, validating the model. In addition to accuracy, the model has two further advantages: it only requires the basic material parameters (i.e., no arbitrary user-defined parameter such as the shear retention factor is required) and it can be directly implemented in the FE software ABAQUS.