939 resultados para Bayesian belief network


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: As low HDL cholesterol levels are a risk factor for cardiovascular disease, raising HDL cholesterol substantially by inhibiting or modulating cholesteryl ester transfer protein (CETP) may be useful in coronary artery disease. The first CETP inhibitor that went into clinical trial, torcetrapib, was shown to increase the levels of HDL cholesterol, but it also increased cardiovascular outcomes, probably due to an increase in blood pressure and aldosterone secretion, by an off-target mechanism/s. Objective/methods: Dalcetrapib is a new CETP modulator that increases the levels of HDL cholesterol, but does not increase blood pressure or aldosterone secretion. The objective was to evaluate a paper describing the effects of dalcetrapib on carotid and aortic wall thickness in subjects with, or at high risk, of coronary artery disease; the dal-PLAQUE study. Results: dal-PLAQUE showed that dalcetrapib reduced the progression of atherosclerosis and may also reduce the vascular inflammation associated with this, in subjects with, or with high risk of, coronary heart disease, who were already taking statins. Conclusions: These results suggest that modulating CETP with dalcetrapib may be a beneficial mechanism in cardiovascular disease. The results of the dal-HEART series, which includes dal-PLAQUE 1 and 2, and dal-OUTCOMES, when complete, will provide more definitive information about the benefit, or not, of dalcetrapib in coronary artery disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New substation technology, such as non-conventional instrument transformers,and a need to reduce design and construction costs, are driving the adoption of Ethernet based digital process bus networks for high voltage substations. Protection and control applications can share a process bus, making more efficient use of the network infrastructure. This paper classifies and defines performance requirements for the protocols used in a process bus on the basis of application. These include GOOSE, SNMP and IEC 61850-9-2 sampled values. A method, based on the Multiple Spanning Tree Protocol (MSTP) and virtual local area networks, is presented that separates management and monitoring traffic from the rest of the process bus. A quantitative investigation of the interaction between various protocols used in a process bus is described. These tests also validate the effectiveness of the MSTP based traffic segregation method. While this paper focusses on a substation automation network, the results are applicable to other real-time industrial networks that implement multiple protocols. High volume sampled value data and time-critical circuit breaker tripping commands do not interact on a full duplex switched Ethernet network, even under very high network load conditions. This enables an efficient digital network to replace a large number of conventional analog connections between control rooms and high voltage switchyards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of an intelligent plug-in electric vehicle (PEV) network is an important research topic in the smart grid environment. An intelligent PEV network enables a flexible control of PEV charging and discharging activities and hence PEVs can be utilized as ancillary service providers in the power system concerned. Given this background, an intelligent PEV network architecture is first developed, and followed by detailed designs of its application layers, including the charging and discharging controlling system, mobility and roaming management, as well as communication mechanisms associated. The presented architecture leverages the philosophy in mobile communication network buildup

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a detailed analysis on the collective dynamics and delayed state feedback control of a three-dimensional delayed small-world network. The trivial equilibrium of the model is first investigated, showing that the uncontrolled model exhibits complicated unbounded behavior. Then three control strategies, namely a position feedback control, a velocity feedback control, and a hybrid control combined velocity with acceleration feedback, are then introduced to stabilize this unstable system. It is shown in these three control schemes that only the hybrid control can easily stabilize the 3-D network system. And with properly chosen delay and gain in the delayed feedback path, the hybrid controlled model may have stable equilibrium, or periodic solutions resulting from the Hopf bifurcation, or complex stranger attractor from the period-doubling bifurcation. Moreover, the direction of Hopf bifurcation and stability of the bifurcation periodic solutions are analyzed. The results are further extended to any "d" dimensional network. It shows that to stabilize a "d" dimensional delayed small-world network, at least a "d – 1" order completed differential feedback is needed. This work provides a constructive suggestion for the high dimensional delayed systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The World Wide Web constitutes one of the most important inventions of the late 20th century: it has changed culture, society, business, communication, politics, and many other fields of human endeavour, not least also by providing a more user-friendly pathway of access to its major underlying technology, the Internet itself. Key phases in its development can be charted, especially by how it has been used to present and share information – and here, the personal or professional, private or official homepage stands in as a useful representation of wider Web trends overall. From hand-coded beginnings through several successive stages of experimentation and standardisation, to the shifting balance between personal sites and social networks, the homepage demonstrates how the Web itself, and its place in our lives, have changed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rural, regional, and remote settlements in Australia require resilient infrastructure to remain sustainable in a context characterized by frequent large-scale natural disasters, long distances between urban centers, and the pressures of economic change. A critical aspect of this infrastructure is the air services network, a system of airports, aircraft operators, and related industries that enables the high-speed movement of people, goods, and services to remote locations. A process of deregulation during the 1970s and 1980s resulted in many of these airports passing into local government and private ownership, and the rationalization of the industry saw the closure of a number of airlines and airports. This paper examines the impacts of deregulation on the resilience of air services and the contribution that they make to regional and rural communities. In particular, the robustness, redundancy, resourcefulness, and rapidity of the system are examined. The conclusion is that while the air services network has remained resilient in a situation of considerable change, the pressures of commercialization and the tendency to manage aspects of the system in isolation have contributed to a potential decrease in overall resilience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chemistry Discipline Network was funded in mid-2011, with the aim of improving communication between chemistry academics in Australia. In our first year of operation, we have grown to over 100 members, established a web presence, and produced substantial mapping reports on chemistry teaching in Australia. We are now working on the definition of standards for a chemistry degree based on the Threshold Learning Outcomes published by the Learning and Teaching Academic Standards Project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes the use of Bayesian approaches with the cross likelihood ratio (CLR) as a criterion for speaker clustering within a speaker diarization system, using eigenvoice modeling techniques. The CLR has previously been shown to be an effective decision criterion for speaker clustering using Gaussian mixture models. Recently, eigenvoice modeling has become an increasingly popular technique, due to its ability to adequately represent a speaker based on sparse training data, as well as to provide an improved capture of differences in speaker characteristics. The integration of eigenvoice modeling into the CLR framework to capitalize on the advantage of both techniques has also been shown to be beneficial for the speaker clustering task. Building on that success, this paper proposes the use of Bayesian methods to compute the conditional probabilities in computing the CLR, thus effectively combining the eigenvoice-CLR framework with the advantages of a Bayesian approach to the diarization problem. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, resulting in a 33.5% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Bayesian methodologies for solving optimal experimental design problems has increased. Many of these methods have been found to be computationally intensive for design problems that require a large number of design points. A simulation-based approach that can be used to solve optimal design problems in which one is interested in finding a large number of (near) optimal design points for a small number of design variables is presented. The approach involves the use of lower dimensional parameterisations that consist of a few design variables, which generate multiple design points. Using this approach, one simply has to search over a few design variables, rather than searching over a large number of optimal design points, thus providing substantial computational savings. The methodologies are demonstrated on four applications, including the selection of sampling times for pharmacokinetic and heat transfer studies, and involve nonlinear models. Several Bayesian design criteria are also compared and contrasted, as well as several different lower dimensional parameterisation schemes for generating the many design points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a combined subtransmission and distribution reliability analysis of SEQEB’s outer suburban network is presented. The reliability analysis was carried out with a commercial software package which evaluates both energy and customer indices. Various reinforcement options were investigated to ascertain the impact they have on the reliability of supply seen by the customers. The customer and energy indices produced by the combined subtransmission and distribution reliability studies contributed to optimise capital expenditure to the most effective areas of the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the paradigm of smart grid as the promising backbone for future network, this paper uses this paradigm to propose a new coordination approach for LV network based on distributed control algorithm. This approach divides the LV network into hierarchical communities where each community is controlled by a control agent. Different level of communication has been proposed for this structure to control the network in different operation modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach for network upgrading to improve the penetration level of Small Scale Generators in residential feeders. In this paper, it is proposed that a common DC link can be added to LV network to alleviate the negative impact of increased export power on AC lines, allowing customers to inject their surplus power with no restrictions to the common DC link. In addition, it is shown that the proposed approach can be a pathway from current AC network to future DC network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.