860 resultados para Architecture and climate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project provided information, selection techniques and strategies to facilitate the development of high-yielding, stay-green wheat varieties for Australian growers through: a) Improved understanding of the relationships between seminal root traits and other root- and shoot-related traits in determining high-yielding, stay-green phenotypes. b). Molecular markers and rapid phenotypic screening methods that allow selection in breeding programs and identification of genetic regions controlling favourable traits. c). Identification of traits leading to high-yielding, stay-green phenotypes for particular target populations of environments using computer simulation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to identify goal conflicts – both actual and potential – between climate and social policies in government strategies in response to the growing significance of climate change as a socioecological issue (IPCC 2007). Both social and climate policies are political responses to long-term societal trends related to capitalist development, industrialisation, and urbanisation (Koch, 2012). Both modify these processes through regulation, fiscal transfers and other measures, thereby affecting conditions for the other. This means that there are fields of tensions and synergies between social policy and climate change policy. Exploring these tensions and synergies is an increasingly important task for navigating genuinely sustainable development. Gough et al (2008) highlight three potential synergies between social and climate change policies: First, income redistribution – a traditional concern of social policy – can facilitate use of and enhance efficiency of carbon pricing. A second area of synergy is housing, transport, urban policies and community development, which all have potential to crucially contribute towards reducing carbon emissions. Finally, climate change mitigation will require substantial and rapid shifts in producer and consumer behaviour. Land use planning policy is a critical bridge between climate change and social policy that provides a means to explore the tensions and synergies that are evolving within this context. This paper will focus on spatial planning as an opportunity to develop strategies to adapt to climate change, and reviews the challenges of such change. Land use and spatial planning involve the allocation of land and the design and control of spatial patterns. Spatial planning is identified as being one of the most effective means of adapting settlements in response to climate change (Hurlimann and March, 2012). It provides the instrumental framework for adaptation (Meyer, et al., 2010) and operates as both a mechanism to achieve adaptation and a forum to negotiate priorities surrounding adaptation (Davoudi, et al., 2009). The acknowledged role of spatial planning in adaptation however has not translated into comparably significant consideration in planning literature (Davoudi, et al., 2009; Hurlimann and March, 2012). The discourse on adaptation specifically through spatial planning is described as ‘missing’ and ‘subordinate’ in national adaptation plans (Greiving and Fleischhauer, 2012),‘underrepresented’ (Roggema, et al., 2012)and ‘limited and disparate’ in planning literature (Davoudi, et al., 2009). Hurlimann and March (2012) suggest this may be due to limited experiences of adaptation in developed nations while Roggema et al. (2012) and Crane and Landis (2010) suggest it is because climate change is a wicked problem involving an unfamiliar problem, various frames of understanding and uncertain solutions. The potential for goal conflicts within this policy forum seem to outweigh the synergies. Yet, spatial planning will be a critical policy tool in the future to both protect and adapt communities to climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

De nos jours, l'utilisation accrue de combustibles à base de fossiles et l'électricité met en péril l'environnement naturel à cause des niveaux élevés de pollution. Il est donc plausible de prévoir des économies d'énergie significatives grâce à la climatisation dite «naturelle»». En accord avec les objectifs acceptés à l'échelle internationale d'une architecture «verte» et durable, l'utilisation de cours intérieures associées aux capteurs de vent, aux murs-Trombe et à d'autres systèmes de climatisation naturelle (aussi bien traditionnels que nouveaux), paraît prometteuse. Ce mémoire propose une analyse de nouvelles approches à la climatisation naturelle et à la production d'air frais avec une consommation minimale d'énergie, eu égard aux traditions et aux tendances, en particulier dans les zones climatiques chaudes et sèches comme l'Iran. Dans ce contexte, regarder l'architecture de l'Islam et la discipline du Qur'an paraissent offrir un guide pour comprendre l'approche musulmane aux processus de décision en design. Nous regardons donc les traditions et les tendances en ce qui concerne la climatisation naturelle à travers l'élément le plus important du contexte islamique, à savoir le Qur'an. C'est pourquoi, à l'intérieur du thème de la tradition, nous avons pris en compte quelques considérations concernant l'influence de l'Islam, et en particulier le respect de la nature associé à un équilibre entre l'harmonie et l'individualité. Ce sont autant de facteurs qui influencent la prise de décisions visant à résoudre des problèmes scientifiques majeurs selon la philosophie et les méthodes islamiques ; ils nous permettent de faire quelques recommandations. La description des principes sous-jacents aux capteurs à vent et des antécédents trouvés dans la nature tels que les colonies de termites, est présentée également. Sous la rubrique tendances, nous avons introduit l'utilisation de matériaux et de principes de design nouveaux. Regarder simultanément ces matériaux nouveaux et l'analogie des colonies de termites suggère de bonnes approches à la conception d'abris pour les victimes de tremblements de terre dans les régions sisimques. Bam, une ville iranienne, peut être considérée comme un exemple spécifique illustrant où les principes exposés dans ce mémoire peuvent s'appliquer le plus adéquatement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various countries have been introducing sustainable assessment tools for real estate design to produce integrated sustainability components not just for the building, but also the landscape component of the development. This paper aims to present the comparison between international and local assessment tools of landscape design for housing estate developments in Bangkok Metropolitan Region (BMR), Thailand. The methodologies used are to review, then compare and identify discrepancy indicators among the tools. This paper will examine four international tools; LEED for Neighbourhood Development (LEED – ND) of United State of America (USA), EnviroDevelopment standards of Australia, Residential Landscape Sustainability of United Kingdom (UK) and Green Mark for Infrastructure of Singapore; and three BMR’s existing tools; Land Subdivision Act B.E. 2543, Environmental Impact Assessment Monitoring Awards (EIA-MA) and Thai’s Rating for Energy and Environmental Sustainability of New construction and major renovation (TREES-NC). The findings show that there are twenty two elements of three categories which are neighbourhood design, community management, and environmental condition. Moreover, only one element in neighbourhood designs different between the international and local tools. The sustainable assessment tools have existed in BMR but they are not complete in only one assessment tool. Thus, the development of new comprehensive assessment tool will be necessary in BMR; however, it should meet the specific environment and climate condition for housing estate development at BMR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The transmission of hemorrhagic fever with renal syndrome (HFRS) is influenced by climatic variables. However, few studies have examined the quantitative relationship between climate variation and HFRS transmission. ---------- Objective: We examined the potential impact of climate variability on HFRS transmission and developed climate-based forecasting models for HFRS in northeastern China. ---------- Methods: We obtained data on monthly counts of reported HFRS cases in Elunchun and Molidawahaner counties for 1997–2007 from the Inner Mongolia Center for Disease Control and Prevention and climate data from the Chinese Bureau of Meteorology. Cross-correlations assessed crude associations between climate variables, including rainfall, land surface temperature (LST), relative humidity (RH), and the multivariate El Niño Southern Oscillation (ENSO) index (MEI) and monthly HFRS cases over a range of lags. We used time-series Poisson regression models to examine the independent contribution of climatic variables to HFRS transmission. ----------- Results: Cross-correlation analyses showed that rainfall, LST, RH, and MEI were significantly associated with monthly HFRS cases with lags of 3–5 months in both study areas. The results of Poisson regression indicated that after controlling for the autocorrelation, seasonality, and long-term trend, rainfall, LST, RH, and MEI with lags of 3–5 months were associated with HFRS in both study areas. The final model had good accuracy in forecasting the occurrence of HFRS. ---------- Conclusions: Climate variability plays a significant role in HFRS transmission in northeastern China. The model developed in this study has implications for HFRS control and prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies - thermally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 μm. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.