1000 resultados para Aragonite
Resumo:
Heavy metals pollution in marine environments has caused great damage to marine biological and ecological systems. Heavy metals accumulate in marine creatures, after which they are delivered to higher trophic levels of marine organisms through the marine food chain, which causes serious harm to marine biological systems and human health. Additionally, excess carbon dioxide in the atmosphere has caused ocean acidification. Indeed, about one third of the CO2 released into the atmosphere by anthropogenic activities since the beginning of the industrial revolution has been absorbed by the world's oceans, which play a key role in moderating climate change. Modeling has shown that, if current trends in CO2 emissions continue, the average pH of the ocean will reach 7.8 by the end of this century, corresponding to 0.5 units below the pre-industrial level, or a three-fold increase in H+ concentration. The ocean pH has not been at this level for several millions of years. Additionally, these changes are occurring at speeds 100 times greater than ever previously observed. As a result, several marine species, communities and ecosystems might not have time to acclimate or adapt to these fast changes in ocean chemistry. In addition, decreasing ocean pH has the potential to seriously affect the growth, development and reproduction reproductive processes of marine organisms, as well as threaten normal development of the marine ecosystem. Copepods are an important part of the meiofauna that play an important role in the marine ecosystem. Pollution of the marine environment can influence their growth and development, as well as the ecological processes they are involved in. Accordingly, there is important scientific value to investigation of the response of copepods to ocean acidification and heavy metals pollution. In the present study, we evaluated the effects of simulated future ocean acidification and the toxicological interaction between ocean acidity and heavy metals of Cu and Cd on T. japonicus. To accomplish this, harpacticoids were exposed to Cu and Cd concentration gradient seawater that had been equilibrated with CO2 and air to reach pH 8.0, 7.7, 7.3 and 6.5 for 96 h. Survival was not significantly suppressed under single sea water acidification, and the final survival rates were greater than 93% in both the experimental groups and the controls. The toxicity of Cu to T. japonicus was significantly affected by sea water acidification, with the 96h LC50 decreasing by nearly threefold from 1.98 to 0.64 mg/L with decreasing pH. The 96 h LC50 of Cd decreased with decreasing pH, but there was no significant difference in mortality among pH treatments. The results of the present study demonstrated that the predicted future ocean acidification has the potential to negatively affect survival of T. japonicus by exacerbating the toxicity of Cu. The calculated safe concentrations of Cu were 11.9 (pH 7.7) and 10.5 (pH 7.3) µg/L, which were below the class I value and very close to the class II level of the China National Quality Standard for Sea Water. Overall, these results indicate that the Chinese coastal sea will face a
Resumo:
Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased 50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.
Resumo:
Environmental transitions leading to spatial physical-chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an in situ and 96-h experimental incubation under conditions of high pressure of CO2 (PCO2 1200 ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food-rich but colder and corrosive estuary induced a traits trade-off expressed as depressed IR under in situ conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher than those of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should be examined in detail as a potential tool for risk mitigation policies in coastal management arrangements.
Resumo:
Thirty-five samples from Hole 778A were prepared for X-ray diffraction (XRD) mineralogical analyses and for chemical analyses of major and trace elements. Most of the selected samples were silt- and sand-sized sedimentary serpentinites or microbreccias except for a soft clast of mafic rock, a hard clast of massive serpentinized peridotite, and a pebble of consolidated, undeformed serpentine microbreccia that contained planktonic foraminifers. Both mineralogical and geochemical analyses allow discrimination of three groups among the analyzed samples. These groups correspond to three stratigraphic intervals present along the drilled section. Group A contains the upper samples (lithologic Unit I). These consist of poorly consolidated serpentine muds carrying hard-rock clasts (serpentinized peridotites, metabasalts). They are characterized by the following mineralogical assemblage: serpentine, Fe-oxides and hydroxides, aragonite, and halite. They exhibit variable SiO2, MgO contents, but are characterized by a SiO2/MgO ratio near 1. CaO content is high in relation to development of aragonite. Al2O3 content is low. Relatively high K2O, Na2O, and Sr contents are present, presumably in relation to interactions with seawater. Group B (30-77 mbsf) contains samples exhibiting very homogeneous chemical and mineralogical compositions. They consist of serpentinite microbreccias exhibiting frequent shear structures. Hard-rock clasts are also present (serpentinized peridotites, metabasalts, one possible chert fragment). The mineralogy of the Group B samples is characterized by the presence of serpentine and authigenic minerals: hydroxycarbonates and hydrogrossular. Calcite and chlorite are also present, but all the samples lack aragonite. Their chemical compositions are remarkably similar to compositions of their parent rocks. Group C contains silt- and sand-sized serpentine and serpentine microbreccias, which are locally rich in red clasts, probably strongly altered (oxidized?) mafic fragments. Intervals having clasts of more diverse origin than those higher in the section were recovered. Clast lithology includes serpentinized peridotites, metabasalts, metavolcaniclastite, meta-olivine gabbro, and amphibolite sandstone. Mineralogy and geochemistry reflect these compositions. Serpentine content of the samples is less than in previous groups. Correlatively, sepiolite, palygorskite, and chlorite-smectite are mineral phases present in the analyzed samples. Accessory igneous minerals (amphiboles, pyroxenes, hematite) also were found. The chemical compositions of most of Group C samples differ from that of massive serpentinized peridotites. The main differences are (1) higher SiO2, CaO, TiO2 and Al2O3 contents, (2) a SiO2/MgO ratio greater than 1, and (3) a negative correlation between Al2O3, and MgO, Cr, and Ni. These characteristics suggest new constraints relative to the flow structure of the flank of Conical Seamount.
Resumo:
Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size-normalised aragonite area. Size-normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size-normalised thickness of the pHlow-shells, these data led us to conclude that low-pH-exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. This is different from normal elongation growth and proceeds through addition of aragonitic parts only, while the production of calcitic parts is confined to elongation growth. Therefore, aragonite cannot be regarded as a disadvantageous polymorph per se under ocean acidification conditions.
Resumo:
We investigate aragonitic skeletons of the Caribbean sclerosponge Ceratoporella nicholsoni from Jamaica, 20 m below sea level (mbsl), and Pedro Bank, 125 mbsl. We use d18O and Sr/Ca ratios as temperature proxies to reconstruct the Caribbean mixed layer and thermocline temperature history since 1400 A.D. with a decadal time resolution. Our age models are based on U/Th dating and locating of the radiocarbon bomb spike. The modern temperature difference between the two sites is used to tentatively calibrate the C. nicholsoni Sr/Ca thermometer. The resulting calibration points to a temperature sensitivity of Sr/Ca in C. nicholsoni aragonite of about -0.1 mmol/mol/K. Our Sr/Ca records reveal a pronounced warming from the early 19th to the late 20th century, both at 20 and 125 mbsl. Two temperature minima in the shallow water record during the late 17th and early 19th century correspond to the Maunder and Dalton sunspot minima, respectively. Another major cooling occurred in the late 16th century and is not correlatable with a sunspot minimum. The temperature contrast between the two sites decreased from the 14th century to a minimum in the late 17th century and subsequently increased to modern values in the early 19th century. This is interpreted as a long-term deepening and subsequent shoaling of the Caribbean thermocline. The major trends of the Sr/Ca records are reproduced in both specimens but hardly reflected in the d18O records.
Resumo:
Sediment samples collected at DSDP Leg 96 Mississippi Fan Sites 615, 616, 620, 621, and 623, Orca Basin Site 618, and Pigmy Basin Site 619 were analyzed for 22 major, minor, and trace elements. This study was undertaken to document the downhole variability in inorganic geochemistry between sites. The mineralogy of the clays, including those from Sites 614, 617, and 622 on the fan, was determined by X-ray diffraction to define the principal clay minerals present at the sites, examine any downhole trends in clay mineralogy, and aid in the interpretation of the geochemical signature of the sediments. Clay mineral composition at all the sites is smectite:illite:chlorite:kaolinite in the approximate percentage ratio 50:20:20:10. Geochemical results indicate only slight variation between and within the sites, with the exception of a discrete unit of carbonates that occurs near the bottom of Site 615. Variation in the major, minor, and trace element composition can be explained by a change in the relative abundance of quartz, clay minerals, and carbonates.
Resumo:
Drilling at Bougainville Guyot (Ocean Drilling Program Site 831), New Hebrides Island Arc during Leg 134 revealed that 727.5 m of carbonate overlies an andesite basement. The carbonate cap at Site 831 consists of 20 m of pelagic carbonate overlying 707.5 m of neritic carbonates. The neritic section consists of ~230 m of largely unaltered aragonite sediment that overlies ~497 m of totally calcitized limestone. The deeper portion of the calcitized interval has been pervasively altered by diagenesis. Prior to this study the age distribution of sediments at Bougainville Guyot was poorly known because age diagnostic fossils are sparsely and discontinuously distributed in the sequence. We have used Sr isotopes to provide temporal constraints on the deposition of carbonates at Site 831; these constraints are critical in reconstructing the vertical movement of Bougainville Guyot before its collision with the New Hebrides Island Arc. Overall, the chronostratigraphy of Bougainville Guyot can be subdivided into three intervals: (1) a Pleistocene interval (102.4 to 391.11 meters below sea floor [mbsf]); (2) a Miocene interval (410.31 to 669.53 mbsf); and (3) an Oligocene interval (678.83 to 727.50 mbsf). Strontium isotopic ages of samples increase with increasing depth in the carbonate sequence, except near the bottom of the sequence, where several samples exhibit a consistent reversed age vs. depth trend. Such age reversals are most likely the product of post-depositional rock-water interaction. Preliminary stable isotope data are consistent with diagenetic alteration in the marine and meteoric environments. Several abrupt decreases in d87Sr, and hence age, of sediments are recognized in the carbonate cap at Bougainville Guyot. These disconformities are most likely the product of subaerial exposure in response to relative sea-level fall. Indeed, Sr-isotope ages indicate that 2 to 9 m.y. of sediment deposition is missing across these d87Sr disconformities.
Resumo:
The sediments of a core of.1.55 m length taken on the windward side of the Cross Bank, Florida Bay, are clearly subdivided into two portions, as shown by grain size analysis: silt-sized particles predominate in the relatively homogeneous lower two thirds of the core. This is succeeded abruptly by a thin layer of sand, containing fragments of Halimeda. They indicate a catastrophic event in the Florida Bay region, because Halimeda does not grow within Florida Bay. Above this layer, the amount of sand decreases at first and then continuously increases right to the present sediment-water-interface. The median and skewness increase simultaneously with the increase in the sand and granule portion. We assume that the changing grain size distribution was determined chiefly by the density of the marine flora: during the deposition of the lower two thirds of the core a dense grass cover acted as a sediment catcher for the fine-grained detritus washed out of the shallow basins of the Florida Bay, and simultaneously prohibited renewed reworking. Similar processes go on today on the surface of most mud banks of Florida Bay. The catastrophic event indicated by the sand layer probably changed the morphology of the bank to such an extent that the sampling point was shifted more to the windward side of the bank. This side is characterized by less dense plant growth. Therefore, less detritus could be caught and the material deposited could be reworked. The pronounced increase in skewness in the upper third of the core certainly indicates a strong washing out of the smaller-sized particles. The sediments are predominantly made up of carbonates, averagely 88.14 percent. The average CaCO3-content is 83.87 percent and the average MgCO3-content amounts to 4.27 percent. The chief carbonate mineral is aragonite making up 60.1 percent of the carbonate portion in the average, followed by high-magnesian calcite (33.8 percent) and calcite (6.1 percent). With increasing grain size the aragonite clearly increases at the cost of high-magnesian calcite in the upper third of the core. Chemically, this is shown by an increase of the CaCO3 : MgCO3-ratio. This increase is mainly caused by the more common occurrence of aragonitic fragments of mollusks in the coarse grain fractions. The bulk of the carbonates is made up of mollusks, foraminifera, ostracods, and - to a much lesser extent - of corals, worm-tubes, coccolithophorids, and calcareous algae, as shown by microscopic investigations. The total amount of the carbonate in the sediments is biogenic detritus with the possible exception of a very small amount of aragonite needles in the clay and fine silt fraction. The individual carbonate components of the gravel and sand fraction can be relatively easy identified as members of a particular animal or plant group. This becomes very difficult in the silt and clay fraction. Brownish aggregates are very common in the coarse and medium silt fraction. It was not always possible to clarify their origin (biogenic detritus, faecal pellets or carbonate particles cemented by carbonates or organic slime, etc.). Organic matter (plant fragments, rootlets), quartz, opal (siliceous sponge needles), and feldspar also occur in the sediments, besides carbonates. The lowermost part of the core has an age of 1365 +/- 90 years, as shown by 14C analysis.
Resumo:
Talus deposits recovered from Site 536 show evidence of aragonite dissolution, secondary porosity development, and calcite cementation. Although freshwater diagenesis could account for the petrographic features of the altered talus deposits, it does not uniquely account for isotopic or trace-element characteristics. Also, the hydrologic setting required for freshwater alteration is not easily demonstrated for the Campeche Bank. A mixing-zone model does not account for the available trace-element data, but does require somewhat less drastic assumptions about the size of the freshwater lens. Although a seawater (bottom-water) alteration model requires no hydrologic difficulties, unusual circumstances are required to account for the geochemical characteristics of the talus deposits using this model.
Resumo:
The effect of short-term (5 days) exposure to CO2-acidified seawater (year 2100 predicted values, ocean pH = 7.6) on key aspects of the function of the intertidal common limpet Patella vulgata (Gastropoda: Patellidae) was investigated. Changes in extracellular acid-base balance were almost completely compensated by an increase in bicarbonate ions. A concomitant increase in haemolymph Ca2+ and visible shell dissolution implicated passive shell dissolution as the bicarbonate source. Analysis of the radula using SEM revealed that individuals from the hypercapnic treatment showed an increase in the number of damaged teeth and the extent to which such teeth were damaged compared with controls. As radula teeth are composed mainly of chitin, acid dissolution seems unlikely, and so the proximate cause of damage is unknown. There was no hypercapnia-related change in metabolism (O2 uptake) or feeding rate, also discounting the possibility that teeth damage was a result of a CO2-related increase in grazing. We conclude that although the limpet appears to have the physiological capacity to maintain its extracellular acid-base balance, metabolism and feeding rate over a 5 days exposure to acidified seawater, radular damage somehow incurred during this time could still compromise feeding in the longer term, in turn decreasing the top-down ecosystem control that P. vulgata exerts over rocky shore environments.
Resumo:
Climate change threatens both the accretion and erosion processes that sustain coral reefs. Secondary calcification, bioerosion, and reef dissolution are integral to the structural complexity and long-term persistence of coral reefs, yet these processes have received less research attention than reef accretion by corals. In this study, we use climate scenarios from RCP 8.5 to examine the combined effects of rising ocean acidity and sea surface temperature (SST) on both secondary calcification and dissolution rates of a natural coral rubble community using a flow-through aquarium system. We found that secondary reef calcification and dissolution responded differently to the combined effect of pCO2 and temperature. Calcification had a non-linear response to the combined effect of pCO2 and temperature: the highest calcification rate occurred slightly above ambient conditions and the lowest calcification rate was in the highest temperature-pCO2 condition. In contrast, dissolution increased linearly with temperature-pCO2 . The rubble community switched from net calcification to net dissolution at +271 µatm pCO2 and 0.75 °C above ambient conditions, suggesting that rubble reefs may shift from net calcification to net dissolution before the end of the century. Our results indicate that (i) dissolution may be more sensitive to climate change than calcification and (ii) that calcification and dissolution have different functional responses to climate stressors; this highlights the need to study the effects of climate stressors on both calcification and dissolution to predict future changes in coral reefs.
Resumo:
The carbon and oxygen isotopic compositions of selected bryozoan skeletons from upper Pleistocene bryozoan mounds in the Great Australian Bight (Ocean Drilling Program Leg 182; Holes 1129C, 1131A, and 1132B) were determined. Cyclostome bryozoans, Idmidronea spp. and Nevianipora sp., have low to intermediate magnesian calcite skeletons (1.5-10.0 and 0.9-6.4 molar percentage [mol%] MgCO3, respectively), but a considerable number include marine cements. The cheilostome Adeonellopsis spp. are biminerallic, principally aragonite, with some high magnesian calcite (HMC) (6.6-12.1 mol% MgCO3). The HMC fraction of Adeonellopsis has lower d13C and similar d18O values compared with the aragonite fraction. Reexamination of modern bryozoan isotopic composition shows that skeletons of Adeonellopsis spp. and Nevianipora sp. form close to oxygen isotopic equilibrium with their ambient water. Therefore, changes in glacial-interglacial oceanographic conditions are preserved in the oxygen isotopic profiles. The bryozoan oxygen isotopic profiles are correlated well with marine isotope Stages 1-8 in Holes 1129C and 1132B and to Stages 1-4(?) in Hole 1131A. The horizons of the bryozoan mounds that yield skeletons with heavier oxygen isotopic values can be correlated with isotope Stages 2, 4(?), 6, and 8 in Hole 1129C; Stages 2 and 4(?) in Hole 1131A; and Stages 2, 4, 6, and 8 in Hole 1132B. These results provide supporting evidence for a model for bryozoan mound formation, in which the mounds were formed during intensified upwelling and increased trophic resources during glacial periods.
Resumo:
A model is presented for hemipelagic siliciclastic and carbonate sedimentation during the last glacial-interglacial cycle in the Capricorn Channel, southern Great Barrier Reef (GBR). Stable isotope ratios, grainsize, carbonate content and mineralogy were analysed for seven cores in a depth transect from 166 to 2892 m below sea level (mbsl). Results show variations in the flux of terrigenous, neritic and pelagic sediments to the continental slope over the last sea level cycle. During the glacial lowstand terrigenous sediment influenced all the cores down to 2000 mbsl. The percentages of quartz and feldspar in the cores decreased with water depth, while the percentage of clay increased. X-ray diffraction analysis of the glacial lowstand clay mineralogy suggests that the siliciclastic sediment was primarily sourced from the Fitzroy River, which debouched directly into the northwest sector of the Capricorn Channel at this time. The cores also show a decrease in pelagic calcite and an increase in aragonite and high magnesium calcite (HMC) during the glacial. The influx of HMC and aragonite is most likely from reworking of coral reefs exposed on the continental shelf during the glacial, and also from HMC ooids precipitated at the head of the Capricorn Channel at this time. Mass accumulation rates (MARs) are high (13.5 g/cm**/kyr) during the glacial and peak at ~20 g/cm** 3/kyr in the early transgression (16-14 ka BP). MARs then decline with further sea level rise as the Fitzroy River mouth retreats from the edge of the continental shelf after 13.5 ka BP. MARs remain low (4 g/cm**3/kyr) throughout the Holocene highstand. Data for the Holocene highstand indicate there is a reduction in siliciclastic influx to the Capricorn Channel with little quartz and feldspar below 350 mbsl. However, fine-grained fluvial sediments, presumably from the Fitzroy River, were still accumulating on the mid slope down to 2000 mbsl. The proportion of pelagic calcite in the core tops increases with water depth, while HMC decreases, and is present only in trace amounts in cores below 1500 mbsl. The difference in the percentage of HMC in the deeper cores between the glacial and Holocene may reflect differences in supply or deepening of the HMC lysocline during the glacial. Sediment accumulation rates also vary between cores in the Capricorn Channel and do not show the expected exponential decrease with depth. This may be due to intermediate or deep water currents reworking the sediments. It is also possible that present bathymetry data are too sparse to detect the potential role that submarine channels may play in the distribution and accumulation of sediments. Comparison of the Capricorn Channel MARs with those for other mixed carbonate/siliciclastic provinces from the northeast margin of Australia indicates that peak MARs in the early transgression in the Capricorn Channel precede those from the central GBR and south of Fraser Island. The difference in the timing of the carbonate and siliciclastic MAR peaks along the northeast margin is primarily related to differences in the physiography and climate of the provinces. The only common trend in the MARs from the northeast margin of Australia is the near synchronicity of the carbonate and siliciclastic MAR peaks in individual sediment cores, which supports a coeval sedimentation model.