Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers


Autoria(s): Langer, Gerald; Nehrke, Gernot; Baggini, Cecilia; Rodolfo-Metalpa, Riccardo; Hall-Spencer, Jason M; Bijma, Jelle
Cobertura

LATITUDE: 40.730170 * LONGITUDE: 13.966330

Data(s)

17/06/2014

Resumo

Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size-normalised aragonite area. Size-normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size-normalised thickness of the pHlow-shells, these data led us to conclude that low-pH-exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. This is different from normal elongation growth and proceeds through addition of aragonitic parts only, while the production of calcitic parts is confined to elongation growth. Therefore, aragonite cannot be regarded as a disadvantageous polymorph per se under ocean acidification conditions.

Formato

text/tab-separated-values, 110 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.847223

doi:10.1594/PANGAEA.847223

Idioma(s)

en

Publicador

PANGAEA

Relação

Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloise (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.6. https://cran.r-project.org/package=seacarb

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Langer, Gerald; Nehrke, Gernot; Baggini, Cecilia; Rodolfo-Metalpa, Riccardo; Hall-Spencer, Jason M; Bijma, Jelle (2014): Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers. Biogeosciences, 11(24), 7363-7368, doi:10.5194/bg-11-7363-2014

Palavras-Chave #Alkalinity, total; Aragonite, fractionated; Aragonite, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Area, size normalised; Area, size normalised, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Ischia_OA; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Salinity; Site; Species; Temperature, water; Temperature, water, standard deviation; Thickness, size normalised; Thickness, size normalised, standard deviation
Tipo

Dataset