944 resultados para ALGAL BLOOMS
Resumo:
The study of "jellyfish blooms" provides important data toward determining the causes and consequences of these phenomena; however, the definition of "bloom" remains controversial and different concepts have been adopted in recent works. By addressing the biological and convenience definitions, this study tested the adequacy of the different concepts of "blooms" for the Class Staurozoa (Cnidaria). From seasonal monitoring data of some species of Staurozoa, we concluded that stauromedusae bloom if we used the biological concept of "bloom", which considers the life cycle and resulting changes in the abundances of these animals. By contrast, the small, benthic, inconspicuous, and non-harmful stauromedusae do not bloom if we use the convenience concept of "bloom", which constrains the events to those that humans can observe and that cause damage to human activities. In other words, the same group of organisms either is or is not capable of blooming depending on which concept of "bloom" is used. In fact, previous literature has suggested that Staurozoa could not bloom, which indicates that the study of "jellyfish blooms" can be biased, considering convenience rather than biological reasoning.
Resumo:
The present study investigates the use of solar heterogeneous photocatalyis (TiO2) for the destruction of [D-Leu]-Microcystin-LR, powerful toxin of widespread occurrence within cyanobacteria blooms. We extracted [D-Leu]-Microcystin-LR from a culture of Microcystis spp. and used a flat plate glass reactor coated with TiO2 (Degussa, P25) for the degradation studies. The irradiance was measured during the experiments with the aid of a spectroradiometer. After the degradation experiments, toxin concentrations were determined by HPLC and mineralization by TOC analyses. Acute and chronic toxicities were, quantified using mice and phosphatase inhibition in vitro assays, respectively. According to the performed experiments, 150 min were necessary to reduce the toxin concentration to the WHO's guideline for drinking water (from 10 to 1 mu g L-1) and to mineralize 90% of the initial carbon content. Another important finding is that solar heterogeneous photocatalysis was a destructive process indeed, not only for the toxin, but also for the other extract components and degradation products generated. Moreover, toxicity tests using mice have shown that the acute effect caused by the initial sample was removed. However, tests using the phosphatase enzyme indicated that it may be formed products capable of inducing chronic effects on mammals. The performed experiments indicate the feasibility of using solar heterogeneous photocatalysis for treating contaminated water with [D-Leu]-Microcystin-LR, not only due to its destruction, but also to the significant removal of organic matter and acute toxicity that can be achieved. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Phycodnaviruses have a significant role in modulating the dynamics of phytoplankton, thereby influencing community structure and succession, nutrient cycles and potentially atmospheric composition because phytoplankton fix about half the carbon dioxide (CO2) on the planet, and some algae release dimethylsulphoniopropionate when lysed by viruses. Despite their ecological importance and widespread distribution, relatively little is known about the evolutionary history, phylogenetic relationships and phylodynamics of the Phycodnaviruses from freshwater environments. Herein we provide novel data on Phycodnaviruses from the largest river system on earth-the Amazon Basin-that were compared with samples from different aquatic systems from several places around the world. Based on phylogenetic inference using DNA polymerase (pol) sequences we show the presence of distinct populations of Phycodnaviridae. Preliminary coarse-grained phylodynamics and phylogeographic inferences revealed a complex dynamics characterized by long-term fluctuations in viral population sizes, with a remarkable worldwide reduction of the effective population around 400 thousand years before the present (KYBP), followed by a recovery near to the present time. Moreover, we present evidence for significant viral gene flow between freshwater environments, but crucially almost none between freshwater and marine environments. The ISME Journal (2012) 6, 237-247; doi: 10.1038/ismej.2011.93; published online 28 July 2011
Resumo:
A procedure has been proposed by Ciotti and Bricaud (2006) to retrieve spectral absorption coefficients of phytoplankton and colored detrital matter (CDM) from satellite radiance measurements. This was also the first procedure to estimate a size factor for phytoplankton, based on the shape of the retrieved algal absorption spectrum, and the spectral slope of CDM absorption. Applying this method to the global ocean color data set acquired by SeaWiFS over twelve years (1998-2009), allowed for a comparison of the spatial variations of chlorophyll concentration ([Chl]), algal size factor (S-f), CDM absorption coefficient (a(cdm)) at 443 nm, and spectral slope of CDM absorption (S-cdm). As expected, correlations between the derived parameters were characterized by a large scatter at the global scale. We compared temporal variability of the spatially averaged parameters over the twelve-year period for three oceanic areas of biogeochemical importance: the Eastern Equatorial Pacific, the North Atlantic and the Mediterranean Sea. In all areas, both S-f and a(cdm)(443) showed large seasonal and interannual variations, generally correlated to those of algal biomass. The CDM maxima appeared in some occasions to last longer than those of [Chl]. The spectral slope of CDM absorption showed very large seasonal cycles consistent with photobleaching, challenging the assumption of a constant slope commonly used in bio-optical models. In the Equatorial Pacific, the seasonal cycles of [Chl], S-f, a(cdm)(443) and S-cdm, as well as the relationships between these parameters, were strongly affected by the 1997-98 El Ni o/La Ni a event.
Resumo:
Recent reports have shown an increase in potentially harmful phytoplankton in Santos bay (Southeastern Brazilian Coast), located in a highly urbanised estuarine complex. Prediction of blooms is, thus, essential but the phytoplankton community structure in very dynamic regions is difficult to determine. In the present work, we discriminate bloom forming microphytoplankton dominance and their relationship to physical and meteorological variables to look for patterns observed in different tides and seasons. Comparing 8 distinct situations, we found five scenarios of dominance that could be related to winds, tides and rainfall: i) Surfers, diatoms occurring during high surf zone energies; ii) Sinkers, represented by larger celled diatoms during spring tide, after periods of high precipitation rates; iii) Opportunistic mixers, composed of chain forming diatoms with small or elongate cells occurring during neap tides; iv) Local mixers, microplanktonic diatoms and dinoflagellates which occurred throughout the 298 sampling stations; and v) Mixotrophic dinoflagellates, after intense estuarine discharges. Results suggest alterations in the temporal patterns for some bloom-forming species, while others appeared in abundances above safe limits for public health. This approach can also illustrate possible impacts of changes in freshwater discharge in highly urbanised estuaries.
Resumo:
Estuaries are extremely dynamic environments that are vulnerable to anthropogenic alterations. Thus, monitoring phytoplankton abundances and composition is an essential tool for the prediction of eutrophication and its effects on coastal ecosystems. Phytoplankton biomass, as chlorophyll-a, in the São Vicente estuary (Brazil) varies in response to tidal cycles and seasonal rainfall. Objectives. To present two datasets designed to assess the relationship between chlorophyll-a and changes in water turbidity driven by tide and rain. Methods. Weekly observations were made in the shallow embayment (February to September 2008; site 1) and observations recorded on alternate days (summer 2010, site 2). Results. At site 1, turbidity differed between high and low tides, but on most days was over 3000 RU, maintaining moderate chlorophyll-a levels (4 mg.m-3) and only two blooms developed during low turbidity. Site 2 mean turbidity was 1500 RU, nutrient level was higher during neap tides and phytoplankton blooms were mainly observed at the end of neap tides at 15-day intervals, dominated by chain-forming diatoms and occasionally flagellates and pennate diatoms. Conclusions. Taxonomic composition of the blooms was different and their frequency altered by events characterized by intense freshwater discharges from the Henry Borden Hydroelectric Dam (> 9*106.m³), inhibiting phytoplankton accumulation during neap tide periods.
Resumo:
Intense phytoplankton blooms were observed along the Patagonian shelf-break with satellite ocean color data, but few in situ optical observations were made in that region. We examine the variability of phytoplankton absorption and particulate scattering coefficients during such blooms on the basis of field data. The chlorophyll-a concentration, [Chla], ranged from 0.1 to 22.3 mg m−3 in surface waters. The size fractionation of [Chla] showed that 80% of samples were dominated by nanophytoplankton (N-group) and 20% by microphytoplankton (M-group). Chlorophyll-specific phytoplankton absorption coefficients at 440 and 676 nm, a*ph(440) and a*ph(676), and particulate scattering coefficient at 660 nm, b*p(660), ranged from 0.018 to 0.173, 0.009 to 0.046, and 0.031 to 2.37 m2 (mg Chla)−1, respectively. Both a*ph(440) and a*ph(676) were statistically higher for the N-group than M-group and also considerably higher than expected from global trends as a function of [Chla]. This result suggests that size of phytoplankton cells in Patagonian waters tends to be smaller than in other regions at similar [Chla]. The phytoplankton cell size parameter, Sf, derived from phytoplankton absorption spectra, proved to be useful for interpreting the variability in the data around the general inverse dependence of a*ph(440), a*ph(676), and b*p(660) on [Chla]. Sf also showed a pattern along the increasing trend of a*ph(440) and a*ph(676) as a function of the ratios of some accessory pigments to [Chla]. Our results suggest that the variability in phytoplankton absorption and scattering coefficients in Patagonian waters is caused primarily by changes in the dominant phytoplankton cell size accompanied by covariation in the concentrations of accessory pigments.
Resumo:
A low content of organic matter, which is largely refractory in nature, is characteristic of most sediments, meaning that aquatic deposit-feeders live on a very poor food source. The food is derived mainly from sedimenting phytodetritus, and in temperate waters like the Baltic Sea, from seasonal phytoplankton blooms. Deposit-feeders are either bulk-feeders, or selective feeders, which preferentially ingest the more organic-rich particles in the sediment, including phytodetritus, microbes and meiofauna. The soft-bottom benthos of the Baltic Sea has low species biodiversity and is dominated by a few macrobenthic species, among which the most numerous are the two deposit-feeding amphipods Monoporeia affinis and Pontoporeia femorata, and the bivalve Macoma balthica. This thesis is based on laboratory experiments on the feeding of these three species, and on the priapulid Halicryptus spinulosus. Feeding by benthic animals is often difficult to observe, but can be effectively studied by the use of tracers. Here we used the radioactive isotope 14C to label food items and to trace the organic matter uptake in the animals, while the stable isotopes 13C and 15N were used to follow feeding on aged organic matter in the sediment. The abundance of M. balthica and the amphipods tends to be negatively correlated, i.e., fewer bivalves are found at sites with dense populations of amphipods, with the known explanation that newly settled M. balthica spat are killed by the amphipods. Whether the postlarvae are just accidentally killed, or also ingested after being killed was tested by labelling the postlarvae with 14C and Rhodamine B. Both tracer techniques gave similar evidence for predation on and ingestion of postlarval bivalves. We calculated that this predation was likely to supply less than one percent of the daily carbon requirement for M. affinis, but might nevertheless be an important factor limiting recruitment of M. balthica. The two amphipods M. affinis and P. femorata are partly vertically segregated in the sediment, but whether they also feed at different depths was unknown. By adding fresh 14C-labelled algae either on the sediment surface or mixed into the sediment, we were able to distinguish surface from subsurface feeding. We found M. affinis and P. femorata to be surface and subsurface deposit-feeders, respectively. Whether the amphipods also feed on old organic matter, was studied by adding fresh 14C-labelled algae on the sediment surface, and using aged, one-year-old 13C- and 15N-labelled sediment as deep sediment. Ingestion of old organic matter, traced by the stable isotopes, differed between the two species, with a higher uptake for P. femorata, suggesting that P. femorata utilises the older, deeper-buried organic matter to a greater extent. Feeding studies with juveniles of both M. affinis and P. femorata had not been done previously. In an experiment with the same procedure and treatments as for the adults, juveniles of both amphipod species were found to have similar feeding strategies. They fed on both fresh and old sediment, with no partitioning of food resources, making them likely to be competitors for the same food resource. Oxygen deficiency has become more wide-spread in the Baltic Sea proper in the last half-century, and upwards of 70 000km2 are now devoid of macrofauna, even though part of that area does not have oxygen concentrations low enough to directly kill the macrofauna. We made week-long experiments on the rate of feeding on 14C-labelled diatoms spread on the sediment surface in different oxygen concentrations for both the amphipod species, M. balthica and H. spinulosus. The amphipods were the most sensitive to oxygen deficiency and showed reduced feeding and lower survival at low oxygen concentrations. M. balthica showed reduced feeding at the lowest oxygen concentration, but no mortality increase. The survival of H. spinulosus was unaffected, but it did not feed, showing that it is not a surface deposit-feeder. We conclude that low oxygen concentrations that are not directly lethal, but reduce food intake, may lead to starvation and death in the longer term.
Resumo:
Meiofauna, and especially marine nematodes are common in sediments around the world. Despite very wide ranging distributions in many nematode species, little is presently known about their dispersal mechanisms shaping these patterns. Rafting, and perhaps ballast water transport has been suggested as viable means for nematode long-range transport. On a much smaller scale other processes have been suggested for their dispersal. They generally include some form of passive suspension into the water column and later on a passive, haphazard settling back towards the bottom. Small-scale phenomena in nematode dispersal were studied by conducting a series of studies at Askö field station, Trosa Archipelago, Baltic proper. Studied aspects were one case of macrofaunal influence on nematode dispersal rate, using an amphipod, Monoporeia affinis as disturbing agent, and three different studies on mechanisms related to settling. The experiments were conducted both in laboratory and field settings. The amphipod Monoporeia affinis did not exert any influence on the dispersal rate in the nematodes. The nematode dispersal was only an effect of time, in the aspect that the more time that past, the more nematodes dispersed from their place of origin. The settling experiments revealed that nematodes do have an active component in their settling behaviour, as they were able to exert influence on the spot where they were to settle. They were able to choose settling spot in response to the food quality of the sediment. It also became evident that contrary to common belief, nematodes are able to extend their presence in the water column far beyond the times that would be predicted considering settling velocities and hydrodynamic conditions alone.
Resumo:
This thesis deals with physical factors and biological interactions affecting the distribution of two fucoid species, Fucus vesiculosus and F. serratus, in the Baltic Sea. Studies have been carried out in two quite different environments: an archipelago, and an open rocky coast. The archipelago has an extremely long coastline with a heterogeneous submerged landscape of different substrate types, slopes, water qualities, and degrees of wave exposure. The factors influencing F. vesiculosus distribution, morphology and epiphyte composition were studied in the Stockholm archipelago using field surveys and spatial modelling in Geographic information systems (GIS). A GIS-method to estimate wave exposure was developed and validated by comparing the result to an index based on vertical zonation of lichens. Wave exposure was considered an important factor for predicting the distribution of F. vesiculosus by its ability to clean hard surfaces from silt, and a predictive model was constructed based on the information of wave exposure and slope of the shore. It is suggested that the lower distribution boundary of attached F. vesiculosus is set by sediment in sheltered parts of the archipelago, and by light availability in highly wave exposed parts. The morphology of F. vesiculosus was studied over a wave exposure gradient, and several characters responded in accordance with earlier studies. However, when separating effects of wave exposure from effects of other confounding water property parameters, only thallus width was significantly different. Several water property parameters were shown to be correlated with wave exposure in the Stockholm archipelago, and the mechanism responsible for the effects on F. vesiculosus morphology is discussed. The composition of epiphytes on F. vesiculosus varied over a wave exposure gradient with a positive correlation to Elachista fucicola, and a negative to Chorda filum. At an open coast the physical environment is much less heterogeneous compared to an archipelago. The distributions of F. vesiculosus, F. serratus, turf-forming algae, and the seafloor substrate, were surveyed along the open coasts of Öland and Gotland. Turf-forming algae dominated all hard substrates in the area, and Polysiphonia fucoides was most abundant. At the Gotland coast F. vesiculosus was less abundant than at the Öland coast, and F. serratus occurred only in the southern-most part. Fucus serratus was increasingly more common towards south which was interpreted as an effect mainly of the Baltic salinity gradient, or the variation of salinity that has occurred in the past. The effects of turf-forming algae and sediment on F. serratus recruitment at 7 m depth off the Öland east coast were studied in the field, and by laboratory experiments. Almost no recruits were found in the algal turf outside the F. serratus patches. More fine sediment was found in the turf than in the F. serratus patches, suggesting that the turf accumulates sediment by decreasing resuspension. Both filamentous algae and sediment decreased the attachment ability of F. serratus zygotes and survival of recruits, and sediment had the strongest effect. It is therefore suggested that F. serratus has difficulties recruiting outside its patches, and that these difficulties are enforced by the eutrophication of the Baltic Sea, which has favoured growth of filamentous algae and increased sedimentation. An overall conclusion is that Fucus distribution is affected by large-scale-factors, such as the eutrophication and salinity changes of the Baltic Sea, as well as by small-scale variation in wave exposure, substrate and slope, and by surface competition with neighbouring species.
Resumo:
The thesis analyses relationships between ecological and social systems in the context of coastal ecosystems. It examines human impacts from resource extraction and addresses management and governance behind resource exploitation. The main premises are that a lack of ecological knowledge leads to poor ecosystem management and that the dichotomy between social and natural systems is an artificial one. The thesis illustrates the importance of basing resource management on the ecological conditions of the resource and its ecosystem. It also demonstrates the necessity of accounting for the human dimension in ecosystem management and the challenges of organising human actions for sustainable use of ecosystem services in the face of economic incentives that push users towards short-term extraction. Many Caribbean coral reefs have undergone a shift from coral to macroalgal domination. An experiment on Glovers Reef Atoll in Belize manually cleared patch reefs in a no-take zone and a fished zone (Papers I and II). The study hypothesised that overfishing has reduced herbivorous fish populations that control macroalgae growth. Overall, management had no significant effect on fish abundance and the impacts of the algal reduction were short-lived. This illustrated that the benefits of setting aside marine reserves in impacted environments should not be taken for granted. Papers III and IV studied the development of the lobster and conch fisheries in Belize, and the shrimp farming industry in Thailand respectively. These studies found that environmental feedback can be masked to give the impression of resource abundance through sequential exploitation. In both cases inadequate property rights contributed to this unsustainable resource use. The final paper (V) compared the responses to changes in the resource by the lobster fisheries in Belize and Maine in terms of institutions, organisations and their role in management. In contrast to Maine’s, the Belize system seems to lack social mechanisms for responding effectively to environmental feedback. The results illustrate the importance of organisational and institutional diversity that incorporate ecological knowledge, respond to ecosystem feedback and provide a social context for learning from and adapting to change.
Resumo:
La explosión demográfica de erizo Diadema antillarum en los ecosistemas sumergidos rocosos del litoral canario está provocando una intensa desertización, generando los popularmente conocidos como fondos de “blanquizales” debido al color blanco que adquiere el recubrimiento calcáreo. Se analizaron los parámetros morfométricos, de densidad poblacional, ecología trófica e interacción específica de la especie de erizo D. antillarum (Philippi, 1845) durante los años 2005, 2006 y 2007 en los fondos rocosos de la isla de Gran Canaria, Islas Canarias, España. Se evaluaron cuatro blanquizales con diferente orientación geográfica y con características bióticas y abióticas distintas, lo que permitió analizar el papel trófico de D. antillarum bajo diferentes condiciones; además de la evaluación de la biomasa de las especies algales halladas en los fondos rocosos donde habita la especie. El estudio hace un especial énfasis en la evaluación de la distribución, discriminación y selección de las diversas fuentes algales consumidas por Diadema antillarum a través de un seguimiento de la asimilación de los productores primarios por los consumidores, mediante el uso de los isótopos estables 13C y 15N Los resultados no mostraron una variación estacional de la morfometría de D. antillarum. Sin embargo, si existe una variación respecto al tamaño del erizo con la profundidad. La especie mostró una disminución de su tamaño cuanto mayor era la profundidad. Asimismo los resultados exhibieron una correlación negativa entre la densidad poblacional de D. antillarum y el tamaño del erizo. Hay una clara tendencia a hallar las tallas pequeñas de erizos conforme aumenta la maduración o desarrollo de los blanquizales. Se encuentran tallas menores cuando la densidad de erizos supera los 5 erizos • m-2. La mayor densidad promedio encontrada en este estudio fue de 12, 83 erizos • m-2 y la talla menor fue de un diámetro de caparazón menor a 2 cm y un ancho de la linterna de Aristóteles de 0,8 cm; la categoría de diámetro de caparazón más abundante fue la comprendida en el rango de 3,5-5,4 cm. Las firmas isotópicas de la fuentes algales y del músculo de D. antillarum mediante el uso de modelos de mezcla permitieron concluir que en términos generales el género Laurencia resultó un constituyente principal en la dieta de D. antillarum en los diferentes blanquizales; los géneros Colpomenia, Padina, Sargassum, Hypnea, y Jania son constituyentes importantes en la dieta de D. antillarum cuando habita en sustratos de blanquizales desarrollados (maduros), de la misma forma que Dictyota, Zonaria, Liagora, Lobophora, y Stypocaulon constituyen fuentes importantes en los blanquizales menos desarrollados (inmaduros), mostrando un alto grado de solapamiento de fuentes. D. antillarum presentó una asimilación diferencial, independientemente de la disponibilidad del alimento. La dieta de D. antillarum refleja una composición algal específica dependiendo de la etapa de maduración del blanquizal El estudio proporciona una herramienta cuantitativa que permite separar ambientes diferentes - hábitats que experimentan diferentes grados de perturbación- a través de la evaluación de una asimilación diferencial de las algas por parte de D. antillarum.
Resumo:
[EN] Habitats dominated by algal canopies are often altered by physical disturbances of varying severity, changing environmental conditions and biological processes. We used Artificial Seaweed Units (ASUs) to test whether severity of physical disturbances on algal canopies affects the post-disturbance colonization of gastropods on subtidal reefs. Specifically, we examined patterns of assemblage structure of gastropods to test the hypothesis that the extent and intensity of canopy removal affects the post-disturbance colonization of ASUs, testing the consistency of these effects among four regions encompassing a 68 latitudinal gradient in southwestern Australia. Because adjacent habitats can act as a source of new colonists (either as drifting migrants or as a source of propagules) from the perimeter surrounding perturbed areas, we also predicted that patterns of colonization (types and total abundances of colonizers) were influenced by the available pool of individuals at the scale of reefs. Three reefs were selected within each region. On each reef, ASUs were placed in the centre of circular canopy clearings of different size (0, 3, 13 and 50 m2) and intensity (50% vs 100%), and retrieved after 3 months. Resulting assemblages occupying the ASUs were quantitatively representative of the adjacent (undisturbed), algal-associated, assemblages at the scale of reef. Within reefs, recruited assemblages largely mimicked those associated with erect red algae. However, neither disturbance size nor intensity affected the colonization patterns across reefs and regions. These results suggest that algal-associated gastropods, regardless of the prevalent mode of dispersion, are resilient to physical disturbances to canopies across broad geographical regions as long as the pool of potential colonists is maintained. A high dispersal ability of gastropods likely ensures a quick colonization of recovering algal habitats.
Resumo:
Suficiencia investigadora-Univ. Las Palmas de Gran Canaria. Facultad de Ciencias del Mar. Departamento de Biologí