916 resultados para 2005-02-BS
Resumo:
Silicon-on-insulator (SOI) substrates incorporating tungsten silicide ground planes (GPs) have been shown to offer the lowest reported crosstalk figure of merit for application in mixed signal integrated circuits. The inclusion of the silicide layer in the structure may lead to stress or defects in the overlying SOI layers and resultant degradation of device performance. It is therefore essential to establish the quality of the silicon on the GPSOI substrate. MOS capacitor structures have been employed in this paper to characterize these GPSOI substrates for the first time. High quality MOS capacitor characteristics have been achieved with minority carrier lifetime of similar to 0.8 ms. These results show that the substrate is suitable for device manufacture with no degradation in the silicon due to stress or metallic contamination resulting from the inclusion of the underlying silicide layer.
Resumo:
We study a protocol for two-qubit-state guidance that does not rely on feedback mechanisms. In our scheme, entanglement can be concentrated by arranging the interactions of the qubits with a continuous variable ancilla. By properly post-selecting the outcomes of repeated measurements performed on the state of the ancilla, the qubit state is driven to have a desired amount of purity and entanglement. We stress the primary role played by the first iterations of the protocol. Inefficiencies in the detection operations can be fully taken into account. We also discuss the robustness of the guidance protocol to the effects of an experimentally motivated model for mixedness of the ancillary states.
Resumo:
A long-lived coherent state and nonlinear interaction have been experimentally demonstrated for the vibrational mode of a trapped ion. We propose an implementation of quantum computation using coherent states of the vibrational modes of trapped ions. Differently from earlier experiments, we consider a far-off resonance for the interaction between external fields and the ion in a bidimensional trap. By appropriate choices of the detunings between the external fields, the adiabatic elimination of the ionic excited level from the Hamiltonian of the system allows for beam splitting between orthogonal vibrational modes, production of coherent states, and nonlinear interactions of various kinds. In particular, this model enables the generation of the four coherent Bell states. Furthermore, all the necessary operations for quantum computation, such as preparation of qubits and one-qubit and controlled two-qubit operations, are possible. The detection of the state of a vibrational mode in a Bell state is made possible by the combination of resonant and off-resonant interactions between the ion and some external fields. We show that our read-out scheme provides highly efficient discrimination between all the four Bell states. We extend this to a quantum register composed of many individually trapped ions. In this case, operations on two remote qubits are possible through a cavity mode. We emphasize that our remote-qubit operation scheme does not require a high-quality factor resonator: the cavity field acts as a catalyst for the gate operation.
Resumo:
A new spectrometer, electron radical interaction chamber, has been developed to study dissociative electron attachment to unstable molecules such as free radicals. It includes a trochoidal electron monochromator and a time-of-flight mass spectrometer. Radicals are generated with a microwave discharge at 2.45 GHz. Preliminary data are presented for radicals formed when a mixture of helium and sulphur dioxide was passed through the microwave discharge. Several new resonances are observed with the discharge on. Resonances at 0 eV (S-), 0.8, 1.2, 3.0 eV (SO-) and 3.7 eV (SO- and S2O-) are assigned to the radical S2O2 and a resonance at 1.6 eV (S-) is assigned to S2O. No new resonances have been assigned to SO, which was also generated in the microwave discharge.
Resumo:
Experimental and theoretical studies of one-electron capture in collisions of He2+ ions with H2O molecules have been carried out in the range 0.025-12 keV amu(-1) corresponding to typical solar wind velocities of 70-1523 km s(-1). Translational energy spectroscopy (TES), photon emission spectroscopy (PES), and fragment ion spectroscopy were employed to identify and quantify the collision mechanisms involved. Cross sections for selective single electron capture into n=1, 2, and 3 states of the He+ ion were obtained using TES while PES provided cross sections for capture into the He+(2p) and He+(3p) states. Our model calculations show that He+(n=2) and He+(n=3) formation proceeds via a single-electron process governed by the nucleus-electron interaction. In contrast, the He+(1s) formation mechanism involves an exothermic two-electron process driven by the electron-electron interaction, where the potential energy released by the electron capture is used to remove a second electron thereby resulting in fragmentation of the H2O molecule. This process is found to become increasingly important as the collision energy decreases. The experimental cross sections are found to be in reasonable agreement with cross sections calculated using the Demkov and Landau-Zener models.