843 resultados para “Hybrid” implementation model
Resumo:
Hippocampal place cells in the rat undergo experience-dependent changes when the rat runs stereotyped routes. One such change, the backward shift of the place field center of mass, has been linked by previous modeling efforts to spike-timing-dependent plasticity (STDP). However, these models did not account for the termination of the place field shift and they were based on an abstract implementation of STDP that ignores many of the features found in cortical plasticity. Here, instead of the abstract STDP model, we use a calcium-dependent plasticity (CaDP) learning rule that can account for many of the observed properties of cortical plasticity. We use the CaDP learning rule in combination with a model of metaplasticity to simulate place field dynamics. Without any major changes to the parameters of the original model, the present simulations account both for the initial rapid place field shift and for the subsequent slowing down of this shift. These results suggest that the CaDP model captures the essence of a general cortical mechanism of synaptic plasticity, which may underlie numerous forms of synaptic plasticity observed both in vivo and in vitro.
Resumo:
Background: Despite effective solutions to reduce teen birth rates, Texas teen birth rates are among the highest in the nation. School districts can impact youth sexual behavior through implementation of evidence-based programs (EBPs); however, teen pregnancy prevention is a complex and controversial issue for school districts. Subsequently, very few districts in Texas implement EBPs for pregnancy prevention. Additionally, school districts receive little guidance on the process for finding, adopting, and implementing EBPs. Purpose: The purpose of this report is to present the CHoosing And Maintaining Programs for Sex education in Schools (CHAMPSS) Model, a practical and realistic framework to help districts find, adopt, and implement EBPs. Methods: Model development occurred in four phases using the core processes of Intervention Mapping: 1) knowledge acquisition, 2) knowledge engineering, 3) model representation, and 4) knowledge development. Results: The CHAMPSS Model provides seven steps, tailored for school-based settings, which encompass phases of assessment, preparation, implementation, and maintenance: Prioritize, Asses, Select, Approve, Prepare, Implement, and Maintain. Advocacy and eliciting support for adolescent sexual health are also core elements of the model. Conclusion: This systematic framework may help schools increase adoption, implementation, and maintenance for EBPs.
Resumo:
Getting evidence-based sexual health education activities into schools can be a complicated process. Working models that assist our educational system in the selection, implementation, and maintenance of effective school-based adolescent health programs are needed. Replicating sexual health programs in school-based settings: A model for schools provides a comprehensive and applied approach that engages all of the important stakeholders within a school district. The results from this study hold much potential to inform Texas and the nation about how a coordinated and practical model can assist school districts to increase the use of evidence-based programs addressing teen pregnancy prevention and sexual health issues.
Resumo:
Research on school-based sexual health education programs is at a critical juncture. With the growing number of evidenced-based programs, more focus is needed on how to help schools adopt and implement these programs. The article in this issue titled “Sexual Health Education from the Perspectives of School Staff: Implications for Adoption and Implementation of Effective Programs in Middle School” provides data on individual cognitive factors that may influence adoption and implementation. This commentary explores another framework, Concerns Based Adoption Model, as a tool for examining and supporting change associated with adoption and implementation of sexual health education programs.
Resumo:
Serial quantitative and correlative studies of experimental spinal cord injury (SCI) in rats were conducted using three-dimensional magnetic resonance imaging (MRI). Correlative measures included morphological histopathology, neurobehavioral measures of functional deficit, and biochemical assays for N-acetyl-aspartate (NAA), lactate, pyruvate, and ATP. A spinal cord injury device was characterized and provided a reproducible injury severity. Injuries were moderate and consistent to within $\pm$20% (standard deviation). For MRI, a three-dimensional implementation of the single spin-echo FATE (Fast optimum angle, short TE) pulse sequence was used for rapid acquisition, with a 128 x 128 x 32 (x,y,z) matrix size and a 0.21 x 0.21 x 1.5 mm resolution. These serial studies revealed a bimodal characteristic in the evolution in MRI pathology with time. Early and late phases of SCI pathology were clearly visualized in $T\sb2$-weighted MRI, and these corresponded to specific histopathological changes in the spinal cord. Centralized hypointense MRI regions correlated with evidence of hemorrhagic and necrotic tissue, while surrounding hyperintense regions represented edema or myelomalacia. Unexpectedly, $T\sb2$-weighted MRI pathology contrast at 24 hours after injury appeared to subside before peaking at 72 hours after injury. This change is likely attributable to ongoing secondary injury processes, which may alter local $T\sb2$ values or reduce the natural anisotropy of the spinal cord. MRI, functional, and histological measures all indicated that 72 hours after injury was the temporal maximum for quantitative measures of spinal cord pathology. Thereafter, significant improvement was seen only in neurobehavioral scores. Significant correlations were found between quantitated MRI pathology and histopathology. Also, NAA and lactate levels correlated with behavioral measures of the level of function deficit. Asymmetric (rostral/caudal) changes in NAA and lactate due to injury indicate that rostral and caudal segments from the injury site are affected differently by the injury. These studies indicate that volumetric quantitation of MRI pathology from $T\sb2$-weighted images may play an important role in early prediction of neurologic deficit and spinal cord pathology. The loss of $T\sb2$ contrast at 24 hours suggests MR may be able to detect certain delayed mechanisms of secondary injury which are not resolved by histopathology or other radiological modalities. Furthermore, in vivo proton magnetic resonance spectroscopy (MRS) studies of SCI may provide a valuable addition source of information about changes in regional spinal cord lactate and NAA levels, which are indicative of local metabolic and pathological changes. ^
Resumo:
A detailed microdosimetric characterization of the M. D. Anderson 42 MeV (p,Be) fast neutron beam was performed using the techniques of microdosimetry and a 1/2 inch diameter Rossi proportional counter. These measurements were performed at 5, 15, and 30 cm depths on the central axis, 3 cm inside, and 3 cm outside the field edge for 10 $\times$ 10 and 20 $\times$ 20 cm field sizes. Spectra were also measured at 5 and 15 cm depth on central axis for a 6 $\times$ 6 cm field size. Continuous slowing down approximation calculations were performed to model the nuclear processes that occur in the fast neutron beam. Irradiation of the CR-39 was performed using a tandem electrostatic accelerator for protons of 10, 6, and 3 MeV and alpha particles of 15, 10, and 7 MeV incident energy on target at angles of incidence from 0 to 85 degrees. The critical angle as well as track etch rate and normal incidence diameter versus linear energy transfer (LET) were obtained from these measurements. The bulk etch rate was also calculated from these measurements. Dose response of the material was studied, and the angular distribution of charged particles created by the fast neutron beam was measured with CR-39. The efficiency of CR-39 was calculated versus that of the Rossi chamber, and an algorithm was devised for derivation of LET spectra from the major and minor axis dimensions of the observed tracks. The CR-39 was irradiated in the same positions as the Rossi chamber, and the derived spectra were compared directly. ^
Resumo:
BACKGROUND The majority of radiological reports are lacking a standard structure. Even within a specialized area of radiology, each report has its individual structure with regards to details and order, often containing too much of non-relevant information the referring physician is not interested in. For gathering relevant clinical key parameters in an efficient way or to support long-term therapy monitoring, structured reporting might be advantageous. OBJECTIVE Despite of new technologies in medical information systems, medical reporting is still not dynamic. To improve the quality of communication in radiology reports, a new structured reporting system was developed for abdominal aortic aneurysms (AAA), intended to enhance professional communication by providing the pertinent clinical information in a predefined standard. METHODS Actual state analysis was performed within the departments of radiology and vascular surgery by developing a Technology Acceptance Model. The SWOT (strengths, weaknesses, opportunities, and threats) analysis focused on optimization of the radiology reporting of patients with AAA. Definition of clinical parameters was achieved by interviewing experienced clinicians in radiology and vascular surgery. For evaluation, a focus group (4 radiologists) looked at the reports of 16 patients. The usability and reliability of the method was validated in a real-world test environment in the field of radiology. RESULTS A Web-based application for radiological "structured reporting" (SR) was successfully standardized for AAA. Its organization comprises three main categories: characteristics of pathology and adjacent anatomy, measurements, and additional findings. Using different graphical widgets (eg, drop-down menus) in each category facilitate predefined data entries. Measurement parameters shown in a diagram can be defined for clinical monitoring and be adducted for quick adjudications. Figures for optional use to guide and standardize the reporting are embedded. Analysis of variance shows decreased average time required with SR to obtain a radiological report compared to free-text reporting (P=.0001). Questionnaire responses confirm a high acceptance rate by the user. CONCLUSIONS The new SR system may support efficient radiological reporting for initial diagnosis and follow-up for AAA. Perceived advantages of our SR platform are ease of use, which may lead to more accurate decision support. The new system is open to communicate not only with clinical partners but also with Radiology Information and Hospital Information Systems.
Resumo:
Due to the ongoing trend towards increased product variety, fast-moving consumer goods such as food and beverages, pharmaceuticals, and chemicals are typically manufactured through so-called make-and-pack processes. These processes consist of a make stage, a pack stage, and intermediate storage facilities that decouple these two stages. In operations scheduling, complex technological constraints must be considered, e.g., non-identical parallel processing units, sequence-dependent changeovers, batch splitting, no-wait restrictions, material transfer times, minimum storage times, and finite storage capacity. The short-term scheduling problem is to compute a production schedule such that a given demand for products is fulfilled, all technological constraints are met, and the production makespan is minimised. A production schedule typically comprises 500–1500 operations. Due to the problem size and complexity of the technological constraints, the performance of known mixed-integer linear programming (MILP) formulations and heuristic approaches is often insufficient. We present a hybrid method consisting of three phases. First, the set of operations is divided into several subsets. Second, these subsets are iteratively scheduled using a generic and flexible MILP formulation. Third, a novel critical path-based improvement procedure is applied to the resulting schedule. We develop several strategies for the integration of the MILP model into this heuristic framework. Using these strategies, high-quality feasible solutions to large-scale instances can be obtained within reasonable CPU times using standard optimisation software. We have applied the proposed hybrid method to a set of industrial problem instances and found that the method outperforms state-of-the-art methods.
Resumo:
Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Earlier modelling studies have mostly relied on fixed prescribed peatland maps and inundation time series of limited temporal coverage. Here, we describe and assess the the Dynamical Peatland Model Based on TOPMODEL (DYPTOP), which predicts the extent of inundation based on a computationally efficient TOPMODEL implementation. This approach rests on an empirical, grid-cell-specific relationship between the mean soil water balance and the flooded area. DYPTOP combines the simulated inundation extent and its temporal persistency with criteria for the ecosystem water balance and the modelled peatland-specific soil carbon balance to predict the global distribution of peatlands. We apply DYPTOP in combination with the LPX-Bern DGVM and benchmark the global-scale distribution, extent, and seasonality of inundation against satellite data. DYPTOP successfully predicts the spatial distribution and extent of wetlands and major boreal and tropical peatland complexes and reveals the governing limitations to peatland occurrence across the globe. Peatlands covering large boreal lowlands are reproduced only when accounting for a positive feedback induced by the enhanced mean soil water holding capacity in peatland-dominated regions. DYPTOP is designed to minimize input data requirements, optimizes computational efficiency and allows for a modular adoption in Earth system models.
Resumo:
PURPOSE Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). METHODS This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. RESULTS For 15 × 34, 5 × 5, and 2 × 2 cm(2) fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the two-dimensional dose comparisons, the differences between calculations and measurements are generally within 2% of the maximal dose value or 2 mm DTA. CONCLUSIONS The results of the dose comparisons suggest that the developed beam model is suitable to accurately reconstruct photon MLC shaped electron beams for a Clinac 23EX and a TrueBeam linac. Hence, in future work the beam model will be utilized to investigate the possibilities of MERT using the photon MLC to shape electron beams.
Resumo:
Changes of porosity, permeability, and tortuosity due to physical and geochemical processes are of vital importance for a variety of hydrogeological systems, including passive treatment facilities for contaminated groundwater, engineered barrier systems (EBS), and host rocks for high-level nuclear waste (HLW) repositories. Due to the nonlinear nature and chemical complexity of the problem, in most cases, it is impossible to verify reactive transport codes analytically, and code intercomparisons are the most suitable method to assess code capabilities and model performance. This paper summarizes model intercomparisons for six hypothetical scenarios with generally increasing geochemical or physical complexity using the reactive transport codes CrunchFlow, HP1, MIN3P, PFlotran, and TOUGHREACT. Benchmark problems include the enhancement of porosity and permeability through mineral dissolution, as well as near complete clogging due to localized mineral precipitation, leading to reduction of permeability and tortuosity. Processes considered in the benchmark simulations are advective-dispersive transport in saturated media, kinetically controlled mineral dissolution-precipitation, and aqueous complexation. Porosity changes are induced by mineral dissolution-precipitation reactions, and the Carman-Kozeny relationship is used to describe changes in permeability as a function of porosity. Archie’s law is used to update the tortuosity and the pore diffusion coefficient as a function of porosity. Results demonstrate that, generally, good agreement is reached amongst the computer models despite significant differences in model formulations. Some differences are observed, in particular for the more complex scenarios involving clogging; however, these differences do not affect the interpretation of system behavior and evolution.
Resumo:
This paper proposes a new estimator for the fixed effects ordered logit model. In contrast to existing methods, the new procedure allows estimating the thresholds. The empirical relevance and simplicity of implementation is illustrated in an application on the effect of unemployment on life satisfaction.
Resumo:
BACKGROUND Compliance with surgical checklist use remains an obstacle in the context of checklist implementation programs. The theory of planned behaviour was applied to analyse attitudes, perceived behaviour control, and norms as psychological antecedents of individuals' intentions to use the checklist. METHODS A cross-sectional survey study with staff (N = 866) of 10 Swiss hospitals was conducted in German and French. Group mean differences between individuals with and without managerial function were computed. Structural equation modelling and confirmatory factor analysis was applied to investigate the structural relation between attitudes, perceived behaviour control, norms, and intentions. RESULTS Significant mean differences in favour of individuals with managerial function emerged for norms, perceived behavioural control, and intentions, but not for attitudes. Attitudes and perceived behavioural control had a significant direct effect on intentions whereas norms had not. CONCLUSIONS Individuals with managerial function exhibit stronger perceived behavioural control, stronger norms, and stronger intentions. This could be applied in facilitating checklist implementation. The structural model of the theory of planned behaviour remains stable across groups, indicating a valid model to describe antecedents of intentions in the context of surgical checklist implementation.
Resumo:
Postmortem investigation is increasingly supported by Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). This led to the idea to implement a noninvasive or minimally invasive autopsy technique. Therefore, a minimally invasive angiography technique becomes necessary, in order to support the vascular cross section diagnostic. Preliminary experiments investigating different contrast agents for CT and MRI and their postmortem applicability have been performed using an ex-vivo porcine coronary model. MSCT and MRI angiography was performed in the porcine model. Three human corpses were investigated using minimally invasive MSCT angiography. Via the right femoral artery a plastic tube was advanced into the aortic arch. Using a flow adjustable pump the radiopaque contrast agent meglumine-ioxithalamate was injected. Subsequent MSCT scanning provided an excellent anatomic visualization of the human arterial system including intracranial and coronary arteries. Vascular pathologies such as calcification, stenosis and injury were detected. Limitations of the introduced approach are cases of major vessel injury and cases that show an advanced stage of decay.
Resumo:
The interaction of a comet with the solar wind undergoes various stages as the comet’s activity varies along its orbit. For a comet like 67P/Churyumov–Gerasimenko, the target comet of ESA’s Rosetta mission, the various features include the formation of a Mach cone, the bow shock, and close to perihelion even a diamagnetic cavity. There are different approaches to simulate this complex interplay between the solar wind and the comet’s extended neutral gas coma which include magnetohydrodynamics (MHD) and hybrid-type models. The first treats the plasma as fluids (one fluid in basic single fluid MHD) and the latter treats the ions as individual particles under the influence of the local electric and magnetic fields. The electrons are treated as a charge-neutralizing fluid in both cases. Given the different approaches both models yield different results, in particular for a low production rate comet. In this paper we will show that these differences can be reduced when using a multifluid instead of a single-fluid MHD model and increase the resolution of the Hybrid model. We will show that some major features obtained with a hybrid type approach like the gyration of the cometary heavy ions and the formation of the Mach cone can be partially reproduced with the multifluid-type model.