943 resultados para two-dimensional coupled-wave theory
Resumo:
We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determination of the prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential with a negative curvature. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The count intercept is a robust method for the numerical analysis of fabrics Launeau and Robin (1996). It counts the number of intersections between a set of parallel scan lines and a mineral phase, which must be identified on a digital image. However, the method is only sensitive to boundaries and therefore supposes the user has some knowledge about their significance. The aim of this paper is to show that a proper grey level detection of boundaries along scan lines is sufficient to calculate the two-dimensional anisotropy of grain or crystal distributions without any particular image processing. Populations of grains and crystals usually display elliptical anisotropies in rocks. When confirmed by the intercept analysis, a combination of a minimum of 3 mean length intercept roses, taken on 3 more or less perpendicular sections, allows the calculation of 3-dimensional ellipsoids and the determination of their standard deviation with direction and intensity in 3 dimensions as well. The feasibility of this quick method is attested by numerous examples on theoretical objects deformed by active and passive deformation, on BSE images of synthetic magma flow, on drawing or direct analysis of thin section pictures of sandstones and on digital images of granites directly taken and measured in the field. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with one-dimensional (1D) conservative plus dissipative nonlinear optical lattices, are investigated. In the case of focusing media (with attractive atomic systems), the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.
Resumo:
We study the order parameter for mixed-symmetry states involving a major d(x2-y2) state and various minor s-wave states (s, s(xy), and Sx2+y2) for different filling and temperature for mixing angles 0 and pi /2. We employ a two-dimensional tight-binding model incorporating second-neighbor hopping for tetragonal and orthorhombic lattice. There is mixing for the symmetric s state both on tetragonal and orthorhombic lattice. The s(xy) state mixes with the d(x2-y2) state only on orthorhombic lattice. The s(x2+y2) state never mixes with the d(x2-y2) state. The temperature dependence of the order parameters is also studied. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The sl(2) affine Toda model coupled to matter is shown to describe various features, such as the spectrum and string tension, of the low-energy effective Lagrangian of two-dimensional QCD (one flavor and N colors). The corresponding string tension is computed when the dynamical quarks are in the fundamental representation of SU(N) and in the adjoint representation of SU(2).
Resumo:
We dimensionally reduce the ABJM model, obtaining a two-dimensional theory that can be thought of as a 'master action'. This encodes information about both T- and S-duality, i.e. describes fundamental (F1) and D-strings (D1) in 9 and 10 dimensions. The Higgsed theory at large VEV, (v) over tilde, and large k yields D1-brane actions in 9d and 10d, depending on which auxiliary fields are integrated out. For N = 1 there is a map to a Green-Schwarz string wrapping a nontrivial circle in C(4)/Z(k).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent -2. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We study exact boundary controllability for a two-dimensional wave equation in a region which is an angular sector of a circle or an angular sector of an annular region. The control, of Neumann type, acts on the curved part of the boundary, while in the straight part we impose homogeneous Dirichlet boundary condition. The initial state has finite energy and the control is square integrable. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We review two-dimensional QCD. We start with the field theory aspects since 't Hooft's 1/N expansion, arriving at the non-Abelian bosonization formula, coset construction and gauge-fixing procedure. Then we consider the string interpretation, phase structure and the collective coordinate approach. Adjoint matter is coupled to the theory, and the Landau-Ginzburg generalization is analysed. We end with considerations concerning higher algebras, integrability, constraint structure, and the relation of high-energy scattering of hadrons with two-dimensional (integrable) field theories.
Resumo:
We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The atomic tunneling between two tunnel-coupled Bose-Einstein condensates (BECs) in a double-well time-dependent trap was studied. For the slowly varying trap, synchronization of oscillations of the trap with oscillations of the relative population was predicted. Using the Melnikov approach, the appearance of the chaotic oscillations in the tunneling phenomena between the condensates was confirmed.
Resumo:
Numerical modeling of the interaction among waves and coastal structures is a challenge due to the many nonlinear phenomena involved, such as, wave propagation, wave transformation with water depth, interaction among incident and reflected waves, run-up / run-down and wave overtopping. Numerical models based on Lagrangian formulation, like SPH (Smoothed Particle Hydrodynamics), allow simulating complex free surface flows. The validation of these numerical models is essential, but comparing numerical results with experimental data is not an easy task. In the present paper, two SPH numerical models, SPHysics LNEC and SPH UNESP, are validated comparing the numerical results of waves interacting with a vertical breakwater, with data obtained in physical model tests made in one of the LNEC's flume. To achieve this validation, the experimental set-up is determined to be compatible with the Characteristics of the numerical models. Therefore, the flume dimensions are exactly the same for numerical and physical model and incident wave characteristics are identical, which allows determining the accuracy of the numerical models, particularly regarding two complex phenomena: wave-breaking and impact loads on the breakwater. It is shown that partial renormalization, i.e. renormalization applied only for particles near the structure, seems to be a promising compromise and an original method that allows simultaneously propagating waves, without diffusion, and modeling accurately the pressure field near the structure.
Resumo:
A Terra atua como um grande magneto esférico, cujo campo assemelha-se àquele gerado por um dipolo magnético. Este campo apresenta mudanças de intensidade que variam com a localização e a hora local. A parte principal do campo geomagnético se origina no interior da Terra através de processos eletromagnéticos. Extensivos estudos mostraram ainda que existem contribuições de origem externa ao planeta, principalmente de origem solar. Dentre estas fontes há anomalias do campo magnético que surgem a partir de um aumento diurno da corrente elétrica em uma estreita faixa da ionosfera, de direção leste-oeste, centrada no equador magnético e denominada Eletrojato Equatorial (EEJ). Ocasionalmente estas correntes podem apresentar reversões de fluxo, sendo denominadas Contra-Eletrojato (CEJ). Vários autores têm estudado os efeitos do EEJ e CEJ sobre as observações geoeletromagnéticas. Eles estão interessados no efeito combinado do EEJ e estruturas geológicas condutivas 1-D e 2-D. Nestes trabalhos a estrutura 2-D sempre se apresentava paralela ao eletrojato, o que é uma hipótese bastante restritiva ao se modelar ambientes geológicos mais realistas, em que corpos bidimensionais podem ter qualquer strike em relação ao EEJ. Neste trabalho apresentamos a solução deste problema sem esta restrição. Assim, mostramos os campos geoeletromagnéticos devidos a estruturas bidimensionais que possuam strike oblíquo em relação ao EEJ, através de perfis dos campos elétrico e magnéticos calculados na superfície e formando direção arbitrária à heterogeneidade condutiva 2-D. Com esta resposta avaliamos ainda qual a influência que estruturas bidimensionais exercem sobre a resposta magnetotelúrica, sob influência do Eletrojato Equatorial. Durante o desenvolvimento deste trabalho, utilizamos o método de elementos finitos, tendo por fonte eletromagnética o EEJ e o CEJ, que por sua vez foram representados por uma combinação de distribuições gaussianas de densidade de corrente. Estas fontes foram decompostas nas direções paralela e perpendicular à estrutura 2-D, resultando nos modos de propagação TE1 e TE2 e TM acoplados, respectivamente. Resolvemos o modo acoplado aplicando uma Transformada de Fourier nas equações de Maxwell e uma Transformada Inversa de Fourier na solução encontrada. De acordo com os experimentos numéricos realizados em um modelo interpretativo da Anomalia Condutiva da Bacia do Parnaíba, formado por uma enorme estrutura de 3000 ohm-m dentro de um corpo externo condutivo (1 ohm-m), concluímos que a presença do CEJ causa uma inversão na anomalia, se compararmos com o resultado do EEJ. Concluímos também que para as frequências mais altas as componentes do campo elétrico apresentam menor influência da parte interna do corpo 2-D do que da parte externa. Já para frequências mais baixas este comportamento se observa com as componentes do campo magnético. Com relação à frequência, vimos os efeitos do “skin-depth”, principalmente nas respostas magnéticas. Além disso, quando a estrutura 2-D está paralela ao eletrojato, o campo elétrico é insensível à estrutura interna do modelo para todos os valores de frequência utilizados. Com respeito ao ângulo θh entre a heterogeneidade e a fonte, vimos que o modo TM se manifesta naturalmente quando θh é diferente de 0°. Neste caso, o modo TE é composto por uma parte devido à componente da fonte paralela à heterogeneidade e a outra devido à componente da fonte perpendicular, que é acoplada ao modo TM. Assim, os campos calculados têm relação direta com o valor de θh. Analisando a influência do ângulo entre a direção do perfil dos campos e o strike da heterogeneidade verificamos que, à medida que θh se aproxima de 90°, os campos primários tornam-se variáveis para valores de θp diferentes de 90°. Estas variações causam uma assimetria na anomalia e dão uma idéia da inclinação da direção do perfil em relação aos corpos. Finalmente, concluímos que uma das influências que a distância entre o centro do EEJ e o centro da estrutura 2-D, causa sobre as componentes dos campos está relacionado às correntes reversas do EEJ e CEJ, pois a 500 km do centro da fonte estas correntes têm máxima intensidade. No entanto, com o aumento da distância, as anomalias diminuem de intensidade. Nas sondagens MT, nós também usamos o EEJ e o CEJ como fonte primária e comparamos nossos resultados com a resposta da onda plana. Deste modo observamos que as componentes do campo geoeletromagnético, usadas para calcular a impedância, têm influência do fator de acoplamento entre os modos TE2 e TM. Além disso, esta influência se torna maior em meios resistivos e nas frequências mais baixas. No entanto, o fator de acoplamento não afeta os dados magnetotelúricos em frequências maiores de 10-2 Hz. Para frequências da ordem de 10-4 Hz os dados MT apresentam duas fontes de perturbação: a primeira e mais evidente é devido à presença fonte 2-D (EEJ e CEJ), que viola a hipótese da onda plana no método MT; e a segunda é causada pelo acoplamento entre os modos TE2 e TM, pois quando a estrutura bidimensional está obliqua à fonte 2-D temos correntes elétricas adicionais ao longo da heterogeneidade. Concluimos assim, que o strike de uma grande estrutura condutiva bidimensional relativamente à direção do EEJ ou CEJ tem de fato influência sobre o campo geomagnético. Por outro lado, para estudos magnetotelúricos rasos (frequências maiores de 10-3 Hz) o efeito do ângulo entre a estrutura geológica 2-D e a direção do EEJ não é tão importante. Contudo, em estudos de litosfera frequências menores de 10-3 Hz) o acoplamento entre os modos TE2 e TM não pode ser ignorado.