953 resultados para ticketing, otrs, single sign on
Resumo:
Inscriptions: Verso: [stamped] Photograph by Freda Leinwand. [463 West Street, Studio 229G, New York, NY 10014].
Resumo:
Malnutrition (MN) is prevalent worldwide in hemodialysis patients (HDP); however it has not been assessed in HDP living in Jeddah, Saudi Arabia. The purpose of this study was to estimate the prevalence of MN in HDP at the Jeddah Kidney Center as well as to determine if the 7-point subjective global assessment (SGA) correlates with anthropometric [Body Mass Index (BMI), Tricep Skinfold Thickness (TSF), Mid-Arm Muscle Circumference (MAMC)], or biochemical (albumin) measurements. In a cross sectional, descriptive study, 270 HDP were assessed for MN. Over half of the HDP were malnourished, with 47.8% moderately and 6.3% severely malnourished. Fifty-eight percent of HDP did not adhere to their diet prescription. As albumin, BMI, TSF, and MAMC decreased, malnutrition became more severe (p < .01). Patients who were female (OR=.43, p=.001), older (OR=.45, p=.001), with no education (OR=3.10, p=.001), underweight (OR=3.56, p<.001), small TSF (OR=1.12, p=.001), and small MAMC (OR=1.15, p=.001) were more likely to be malnourished. The prevalence of MN is high in these HDP. A consistent nutritional assessment protocol is warranted and should be implemented to decrease MN in Saudi HDP.
Resumo:
This investigation is concerned with the study of effect of Double Austenitization (DA) and Single Austenitization (SA) heat treatment processes on microstructure and mechanical property of AISI D2type cold worked tool steel. To maximize hardness, tool steels are used in a quenched and tempered condition. This involves heating the material to the austenitizing temperature (∼850−1100 °C), quenching at an appropriate rate to form martensite, and tempering to reduce the retained austenite content and induce toughness. The merits of DA treatment isto promote dissolution of carbides at the same time proscribe grain coarsening significantly was attempted in D2 tool steel. The study has found that DA treatment has induced high hardness with insignificant growth in grains. The increase in hardness is attributed to increase in carbon content in matrix due to dissolution of carbides; whereas finer grains due to role of inclusions.
Resumo:
This investigation is concerned with the study of effect of Double Austenitization (DA) and Single Austenitization (SA) heat treatment processes on microstructure and mechanical property of AISI D2type cold worked tool steel. To maximize hardness, tool steels are used in a quenched and tempered condition. This involves heating the material to the austenitizing temperature (∼850−1100 °C), quenching at an appropriate rate to form martensite, and tempering to reduce the retained austenite content and induce toughness. The merits of DA treatment isto promote dissolution of carbides at the same time proscribe grain coarsening significantly was attempted in D2 tool steel. The study has found that DA treatment has induced high hardness with insignificant growth in grains. The increase in hardness is attributed to increase in carbon content in matrix due to dissolution of carbides; whereas finer grains due to role of inclusions.
Resumo:
[EN] The incubation is an essential life period for oviparous species that very often experiences a high mortality. In some reptile species the number of eggs that develop together in the incubation chamber affects survival and hatchling phenotype. Sea turtle eggs develop in underground locations on sandy beaches in large masses that usually have more than 80 eggs. Natural egg mortality seems to vary among species and for the sensitive leatherbacks, external eggs seems to survive better than internal ones within the nest.
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.
Resumo:
The effect of a pre-shipment hypochlorite treatment on botrytis incidence was evaluated in a large number of rose cultivars and under different long-term storage conditions. Application parameters, stability and sources of hypochlorite were investigated. Irrespective of the type of packaging and shipment conditions, roses that received a pre-shipment treatment with 100 to 150 mg/L hypochlorite showed a significantly decreased botrytis incidence compared to non-hypochlorite treated roses. The hypochlorite treatment generally was more effective than a comparable treatment with commercial fungicides. Dipping the flower heads for approximately one second in a hypochlorite solution was more effective than spraying the heads. In few cases minor hypochlorite-induced damage on the petal tips was observed at higher concentrations (>200 mg/L). Apart from the effect on botrytis incidence, the treatment resulted in reduced water loss that may have an additional beneficial effect on the eventual flower quality. It is concluded that, apart from other obvious measures to reduce botrytis incidence (prevention of high humidity at the flower heads) a pre-shipment floral dip in 100 to 150 mg/L hypochlorite from commercial household bleach is an easy and cost effective way to reduce botrytis incidence following long term storage/transportation of roses. © 2015, International Society for Horticultural Science. All rights reserved.
Resumo:
A validation study examined the accuracy of a purpose-built single photon absorptiometry (SPA) instrument for making on-farm in vivo measurements of bone mineral density (BMD) in tail bones of cattle. In vivo measurements were made at the proximal end of the ninth coccygeal vertebra (Cy9) in steers of two age groups (each n = 10) in adequate or low phosphorus status. The tails of the steers were then resected and the BMD of the Cy9 bone was measured in the laboratory with SPA on the resected tails and then with established laboratory procedures on defleshed bone. Specific gravity and ash density were measured on the isolated Cy9 vertebrae and on 5-mm2 dorso-ventral cores of bone cut from each defleshed Cy9. Calculated BMD determined by SPA required a measure of tail bone thickness and this was estimated as a fraction of total tail thickness. Actual tail bone thickness was also measured on the isolated Cy9 vertebrae. The accuracy of measurement of BMD by SPA was evaluated by comparison with the ash density of the bone cores measured in the laboratory. In vivo SPA measurements of BMD were closely correlated with laboratory measurements of core ash density (r = 0.92). Ash density and specific gravity of cores, and all SPA measures of BMD, were affected by phosphorus status of the steers, but the effect of steer age was only significant (P < 0.05) for steers in adequate phosphorus status. The accuracy of SPA to determine BMD of tail bone may be improved by reducing error associated with in vivo estimation of tail bone thickness, and also by adjusting for displacement of soft tissue by bone mineral. In conclusion a purpose-built SPA instrument could be used to make on-farm sequential non-invasive in vivo measurements of the BMD of tailbone in cattle with accuracy acceptable for many animal studies.
Resumo:
The subject of quark transverse spin and transverse momentum distribution are two current research frontier in understanding the spin structure of the nucleons. The goal of the research reported in this dissertation is to extract new information on the quark transversity distribution and the novel transverse-momentum-dependent Sivers function in the neutron. A semi-inclusive deep inelastic scattering experiment was performed at the Hall A of the Jefferson laboratory using 5.9 GeV electron beam and a transversely polarized ^{3}He target. The scattered electrons and the produced hadrons (pions, kaons, and protons) were detected in coincidence with two large magnetic spectrometers. By regularly flipping the spin direction of the transversely polarized target, the single-spin-asymmetry (SSA) of the semi-inclusive deep inelastic reaction ^{3}He^{uparrow}(e,e'h^{\pm})X was measured over the kinematic range 0.13 < x < 0.41 and 1.3 < Q^{2} < 3.1 (GeV)^{2}. The SSA contains several different azimuthal angular modulations which are convolutions of quarks distribution functions in the nucleons and the quark fragmentation functions into hadrons. It is from the extraction of the various ``moments'' of these azimuthal angular distributions (Collins moment and Sivers moment) that we obtain information on the quark transversity distribution and the novel T-odd Sivers function. In this dissertation, I first introduced the theoretical background and experimental status of nucleon spins and the physics of SSA. I will then present the experimental setup and data collection of the JLab E06-010 experiment. Details of data analysis will be discussed next with emphasis on the kaon particle identification and the Ring-Imaging Cherenkov detector which are my major responsibilities in this experiment. Finally, results on the kaon Collins and Sivers moments extracted from the Maximum Likelihood method will be presented and interpreted. I will conclude with a discussion on the future prospects for this research.
Resumo:
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in the rpoB, katG, inhA, ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 for rpoB, katG, inhA, ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Resumo:
We examined the optical properties of nanolayered metal-dielectric lattices. At subwavelength regimes, the periodic array of metallic nanofilms demonstrates nonlocality-induced double refraction, conventional positive and as well as negative. In particular, we report on energy-flow considerations concerning both refractive behaviors concurrently. Numerical simulations provide transmittance of individual beams in Ag-TiO2 metamaterials under different configurations. In regimes of the effective-medium theory predicting elliptic dispersion, negative refraction may be stronger than the expected positive refraction.