999 resultados para thermal entanglement
Resumo:
In this article, we describe our ongoing efforts in addressing the environment and energy challenges facing the world today. Tapping solar thermal energy seems to be the right choice for a country like India. We look at three solar-thermal technologies in the laboratory — water purification/distillation, Stirling engine, and air-conditioning/refrigeration.
Resumo:
Nanocrystalline materials exhibit very high strengths compared to conventional materials, but their thermal stability may be poor. Electrodeposition is one of the promising methods for obtaining dense nanomaterials. It is shown that use of two different baths and appropriate conditions enables the production of nano-Ni with properties similar to commercially available materials. Microindentation experiments revealed a four fold increase in hardness value for nano-Ni compared to conventional coarse grained Ni. An improved thermal stability of nano-Ni was observed on co-deposition of nano-Al2O3particles.
Resumo:
Bulk Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses, are found to exhibit memory type electrical switching. The switching voltages (V(t)) and thermal stability of Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses are found to decrease with Sn content. The composition dependence of v, has been understood on the basis of the decrease in the OFF state resistance and thermal stability of these glasses with tin addition. X-ray diffraction studies reveal that no elemental Sn or Sn compounds with Te or Ge are present in thermally crystallized Ge-Te-Sn samples. This indicates that Sn atoms do not interact with the host matrix and form a phase separated network of its own, which remains in the parent glass matrix as an inclusion. Consequently, there is no enhancement of network connectivity and rigidity. The thickness dependence of switching voltages of Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses is found to be linear, in agreement with the memory switching behavior shown by these glasses. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper reports single pulse shock tube and ab initio studies on thermal decomposition of 2-fluoro and 2-chloroethanol at T=1000–1200 K. Both molecules have HX (X = F/Cl) and H2O molecular elimination channels. The CH3CHO formed by HX elimination is chemically active and undergoes secondary decomposition resulting in the formation of CH4, C2H6, and C2H4. A detailed kinetic simulation indicates that the formation of C2H4 could not be quantitatively explained as arising exclusively from secondary CH3CHO decomposition. Contributions from primary radical processes need to be considered to explain C2H4 quantitatively. Ab initio calculations on HX and H2O elimination reactions from the haloethanols at HF, MP2, and DFT levels with various basis sets up to 6/311++G**are reported. It is pointed out that due to strong correlations between A and Eα, comparison of these two parameters between experimental and theoretical results could be misleading.
Resumo:
This lecture describes some recent attempts at unravelling the mechanics of the temperature distribution near ground, especially during calm, clear nights. In particular, a resolution is offered of the so-called Ramdas paradox, connected with observations of a temperature minimum some decimetres above bare soil on calm clear nights, in apparent defiance of the Rayleigh criterion for instability due to thermal convection. The dynamics of the associated temperature distribution is governed by radiative and convective transport and by thermal conduction, and is characterised by two time constants, involving respectively quick radiative adjustments and slow diffusive relaxation. The theory underlying the work described here suggests that surface parameters like ground emissivity and soil thermal conductivity can exert appreciable influence on the development of nocturnal inversions.
Resumo:
We report electrical property of a polycrystalline NdLiMo2O8 ceramics using complex impedance analysis. The material shows temperature dependent electrical relaxation phenomena. The d.c. conductivity shows typical Arrhenius behavior, when observed as a function of temperature. The a.c. conductivity is found to obey Jonscher's universal power law. The material was prepared in powder form by a standard solid-state reaction technique. Material formation and crystallinity have been confirmed by X-ray diffraction studies. Impedance measurements have been performed over a range of temperatures and frequencies. The results have been analyzed in the complex plane formalism and suitable equivalent circuits have been proposed in different regions. The role of bulk and grain boundary effect in the overall electrical conduction process is discussed with proper justification. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Application of non-thermal plasma for gas cleaning is gaining prominence in the recent years. Normally, the gas treatment was carried out at or above room temperature, by the dry type plasma reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the flue gas mixture. We propose the non-thermal plasma process at very low temperature, and report here some interesting results of treatment of NO or N2O with pulsed plasma below — 100°C ambient temperature. Direct methanol synthesis from CH4 and CO2 at very low temperature is also reported. A comparative analysis of the various tests are presented together with a note on the energy consideration
Resumo:
A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.
Resumo:
Application of non-thermal plasma for gas cleaning is gaining prominence in the recent years. Normally, the gas treatment was carried out at or above room temperature, by the dry type plasma reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the flue gas mixture. We propose the non-thermal plasma process at very low temperature, and report here some interesting results of treatment of NO or N2O with pulsed plasma below — 100°C ambient temperature. Direct methanol synthesis from CH4 and CO2 at very low temperature is also reported. A comparative analysis of the various tests are presented together with a note on the energy consideration
Resumo:
We study the bipartite entanglement of strongly correlated systems using exact diagonalization techniques. In particular, we examine how the entanglement changes in the presence of long-range interactions by studying the Pariser-Parr-Pople model with long-range interactions. We compare the results for this model with those obtained for the Hubbard and Heisenberg models with short-range interactions. This study helps us to understand why the density matrix renormalization group (DMRG) technique is so successful even in the presence of long-range interactions. To better understand the behavior of long-range interactions and why the DMRG works well with it, we study the entanglement spectrum of the ground state and a few excited states of finite chains. We also investigate if the symmetry properties of a state vector have any significance in relation to its entanglement. Finally, we make an interesting observation on the entanglement profiles of different states (across the energy spectrum) in comparison with the corresponding profile of the density of states. We use isotropic chains and a molecule with non-Abelian symmetry for these numerical investigations.
Resumo:
Designing a heat sink based on a phase change material (PCM) under cyclic loading is a critical issue. For cyclic operation, it is required that the fraction of the PCM melting during the heating cycle should completely resolidify during the cooling period, so that that thermal storage unit can be operated for an unlimited number of cycles. Accordingly, studies are carried out to find the parameters influencing the behavior of a PCM under cyclic loading. A number of parameters are identified in the process, the most important ones being the duty cycle and heat transfer coefficient (h) for cooling. The required h or the required cooling period for complete resolidification for infinite cyclic operation of a conventional PCM-based heat sink is found to be very high and unrealistic with air cooling from the surface. To overcome this problem, the conventional design is modified where h and the area exposed to heat transfer can be independently controlled. With this arrangement, the enhanced area provided for cooling keeps h within realistic limits. Analytical investigation is carried out to evaluate the thermal performance of this modified PCM-based heat sink in comparison to those with conventional designs. Experiments are also performed on both the conventional and the modified PCM-based heat sinks to validate the new findings.
Resumo:
Thermal management of distributed electronics similar to data centers is studied using a bi-disperse porous medium (BDPM) approach. The BDPM channel comprises heat generating micro-porous square blocks, separated by macro-pores. Laminar forced convection cooling fluid of Pr = 0.7 saturates both the micro- and macro-pores. Bi-dispersion effect is induced by varying the macro-pore volume fraction phi(E), and by changing the number of porous blocks N-2, both representing re-distribution of the electronics. When 0.2 <= phi(E) <= 0.86, the heat transfer No is enhanced twice (from similar to 550 to similar to 1100) while the pressure drop Delta p* reduces almost eightfold. For phi(E) < 0.5, No reduces quickly to reach a minimum at the mono -disperse porous medium (MDPM) limit (phi(E) -> 0). Compared to N-2 = 1 case, No for BDPM configuration is high when N-2 >> 1, i.e., the micro-porous blocks are many and well distributed. The Nu increase with Re changes from non-linear to linear as N-2 increases from 1 to 81, with corresponding insignificant pumping power increase. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We present global multidimensional numerical simulations of the plasma that pervades the dark matter haloes of clusters, groups and massive galaxies (the intracluster medium; ICM). Observations of clusters and groups imply that such haloes are roughly in global thermal equilibrium, with heating balancing cooling when averaged over sufficiently long time- and length-scales; the ICM is, however, very likely to be locally thermally unstable. Using simple observationally motivated heating prescriptions, we show that local thermal instability (TI) can produce a multiphase medium with similar to 104 K cold filaments condensing out of the hot ICM only when the ratio of the TI time-scale in the hot plasma (tTI) to the free-fall time-scale (tff) satisfies tTI/tff? 10. This criterion quantitatively explains why cold gas and star formation are preferentially observed in low-entropy clusters and groups. In addition, the interplay among heating, cooling and TI reduces the net cooling rate and the mass accretion rate at small radii by factors of similar to 100 relative to cooling-flow models. This dramatic reduction is in line with observations. The feedback efficiency required to prevent a cooling flow is similar to 10-3 for clusters and decreases for lower mass haloes; supernova heating may be energetically sufficient to balance cooling in galactic haloes. We further argue that the ICM self-adjusts so that tTI/tff? 10 at all radii. When this criterion is not satisfied, cold filaments condense out of the hot phase and reduce the density of the ICM. These cold filaments can power the black hole and/or stellar feedback required for global thermal balance, which drives tTI/tff? 10. In comparison to clusters, groups have central cores with lower densities and larger radii. This can account for the deviations from self-similarity in the X-ray luminositytemperature () relation. The high-velocity clouds observed in the Galactic halo can be due to local TI producing multiphase gas close to the virial radius if the density of the hot plasma in the Galactic halo is >rsim 10-5 cm-3 at large radii.