964 resultados para sodium carbonate and steam catalytic gasification
Resumo:
We have previously confirmed the presence of common antigens between Schistosoma mansoni and its vector, Biomphalaria glabrata. Cross-reactive antigens may be important as possible candidates for vaccine and diagnosis of schistosomiasis. Sera from outbred mice immunized with a soluble Biomphalaria glabrata antigen (SBgA) of non-infected B. glabrata snails recognized molecules of SBgA itself and S. mansoni AWA by Western blot. Recognition of several molecules of the SBgA were inhibited by pre-incubation with AWA (16, 30, 36, 60 and 155 kDa). The only specific molecule of AWA, inhibited by SBgA, was a 120 kDa protein. In order to determine which epitopes of SBgA were glycoproteins, the antigen was treated with sodium metaperiodate and compared with non-treated antigen. Molecules of 140, 60 and 24 kDa in the SBgA appear to be glycoproteins. Possible protective effects of the SBgA were evaluated immunizing outbred mice in two different experiments using Freund's Adjuvant. In the first one (12 mice/group), we obtained a significant level of protection (46%) in the total worm load, with a high variability in worm recovery. In the second experiment (22 mice/group), no significant protection was observed, neither in worm load nor in egg production per female. Our results suggest that SBgA constitutes a rich source of candidate antigens for diagnosis and prophylactic studies.
Resumo:
BACKGROUND: Pharmacological interruption of the renin-angiotensin system focuses on optimization of blockade. As a measure of intrarenal renin activity, we have examined renal plasma flow (RPF) responses in a standardized protocol. Compared with responses with angiotensin-converting enzyme inhibition (rise in RPF approximately 95 mL x min(-1) x 1.73 m(-2)), greater renal vasodilation with angiotensin receptor blockers (approximately 145 mL x min(-1) x 1.73 m(-2)) suggested more effective blockade. We predicted that blockade with the direct oral renin inhibitor aliskiren would produce renal vascular responses exceeding those induced by angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. METHODS AND RESULTS: Twenty healthy normotensive subjects were studied on a low-sodium (10 mmol/d) diet, receiving separate escalating doses of aliskiren. Six additional subjects received captopril 25 mg as a low-sodium comparison and also received aliskiren on a high-sodium (200 mmol/d) diet. RPF was measured by clearance of para-aminohippurate. Aliskiren induced a remarkable dose-related renal vasodilation in low-sodium balance. The RPF response was maximal at the 600-mg dose (197+/-27 mL x min(-1) x 1.73 m(-2)) and exceeded responses to captopril (92+/-20 mL x min(-1) x 1.73 m(-2); P<0.01). Furthermore, significant residual vasodilation was observed 48 hours after each dose (P<0.01). The RPF response on a high-sodium diet was also higher than expected (47+/-17 mL x min(-1) x 1.73 m(-2)). Plasma renin activity and angiotensin levels were reduced in a dose-related manner. As another functional index of the effect of aliskiren, we found significant natriuresis on both diets. CONCLUSIONS: Renal vasodilation in healthy people with the potent renin inhibitor aliskiren exceeded responses seen previously with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. The effects were longer lasting and were associated with significant natriuresis. These results indicate that aliskiren may provide more complete and thus more effective blockade of the renin-angiotensin system.
Resumo:
The epithelial sodium channel (ENaC) is a key element for the maintenance of sodium balance and the regulation of blood pressure. Three homologous ENaC subunits (alpha, beta and gamma) assemble to form a highly Na+-selective channel. However, the subunit stoichiometry of ENaC has not yet been solved. Quantitative analysis of cell surface expression of ENaC alpha, beta and gamma subunits shows that they assemble according to a fixed stoichiometry, with alpha ENaC as the most abundant subunit. Functional assays based on differential sensitivities to channel blockers elicited by mutations tagging each alpha, beta and gamma subunit are consistent with a four subunit stoichiometry composed of two alpha, one beta and one gamma. Expression of concatameric cDNA constructs made of different combinations of ENaC subunits confirmed the four subunit channel stoichiometry and showed that the arrangement of the subunits around the channel pore consists of two alpha subunits separated by beta and gamma subunits.
Resumo:
Schistosomiasis low transmission areas as Venezuela, can be defined as those where the vector exists, the prevalence of active cases is under 25%, individuals with mild intensity of infection predominate and are mostly asymptomatic. These areas are the consequence of effective control programs, however, "silent" epidemiological places are difficult to trace, avoiding the opportune diagnosis and treatment of infected persons. Clinic and abdominal ultrasound have not shown to discriminate infected from uninfected persons in areas where besides Schistosoma mansoni, intestinal parasites are the rule. Under these conditions, serology remains as a very valuable diagnostic tool, since it gives a closer approximation to the true prevalence. In this sense, circumoval precipitin test, ELISA-SEA with sodium metaperiodate, and alkaline phosphatase immunoassay joined to coprology allow the identification of the "schistosomiasis cases". In relation to public health, schistosomiasis has been underestimated by the sanitary authorities and the investment on its control is being transferred to other diseases of major social and political relevance neglecting sanitary efforts and allowing growth of snail population. Some strategies of diagnosis and control should be done before schistosomiasis reemergence occurs in low transmission areas.
Resumo:
Neuropeptide Y (NPY) is present in the adrenal medulla, in sympathetic neurons as well as in the circulation. This peptide not only exerts a direct vasoconstrictor effect, but also potentiates the vasoconstriction evoked by norepinephrine and sympathetic nerve stimulation. The vasoconstrictor effect of norepinephrine is also enhanced by salt loading and reduced by salt depletion. The purpose of this study was therefore to assess whether there exists a relationship between dietary sodium intake and the levels of circulating NPY. Uninephrectomized normotensive rats were maintained for 3 weeks either on a low, a regular or a high sodium intake. On the day of the experiment, plasma levels of NPY and catecholamines were measured in the unanesthetized animals. There was no significant difference in plasma norepinephrine and epinephrine levels between the 3 groups of rats. Plasma NPY levels were the lowest (65.4 +/- 8.8 fmol/ml, n-10, Mean +/- SEM) in salt-restricted and the highest (151.2 +/- 25 fmol/ml, n-14, p less than 0.02) in salt-loaded animals. Intermediate values were obtained in rats kept on a regular sodium intake (117.6 +/- 20.1 fmol/ml). These findings are therefore compatible with the hypothesis that sodium balance might to some extent influence blood pressure regulation via changes in circulating NPY levels which in turn modify blood pressure responsiveness.
Resumo:
Renal vein thrombosis and the congenital nephrotic syndrome have been associated with nephrotic-range proteinuria/nephrotic syndrome and hypertension in the newborn period. We describe a newborn with severe hypertension and proteinuria secondary to unilateral renal artery stenosis. Proteinuria completely disappeared with blood pressure control (with sodium nitroprusside and an angiotensin-converting enzyme inhibitor). Although renin was not measured, we speculate that proteinuria might have been induced by a high renin state, and was controlled by the angiotensin-converting enzyme inhibitor.
Resumo:
The human protozoan parasite Leishmania major has been shown to exhibit several morphological and biochemical features characteristic of a cell death program when differentiating into infectious stages and under a variety of stress conditions. Although some caspase-like peptidase activity has been reported in dying parasites, no caspase gene is present in the genome. However, a single metacaspase gene is present in L. major whose encoded protein harbors the predicted secondary structure and the catalytic dyad histidine/cysteine described for caspases and other metacaspases identified in plants and yeast. The Saccharomyces cerevisiae metacaspase YCA1 has been implicated in the death of aging cells, cells defective in some biological functions, and cells exposed to different environmental stresses. In this study, we describe the functional heterologous complementation of a S. cerevisiae yca1 null mutant with the L. major metacaspase (LmjMCA) in cell death induced by oxidative stress. We show that LmjMCA is involved in yeast cell death, similar to YCA1, and that this function depends on its catalytic activity. LmjMCA was found to be auto-processed as occurs for caspases, however LmjMCA did not exhibit any activity with caspase substrates. In contrast and similarly to Arabidopsis thaliana metacaspases, LmjMCA was active towards substrates with arginine in the P1 position, with the activity being abolished following H147A and C202A catalytic site mutations. These results suggest that metacaspases are members of a family of peptidases with a role in cell death conserved in evolution notwithstanding possible differences in their catalytic activity.
Resumo:
Glitazones are used in the treatment of type 2 diabetes as efficient insulin sensitizers. They can, however, induce peripheral edema through an unknown mechanism in up to 18% of cases. In this double-blind, randomized, placebo-controlled, four-way, cross-over study, we examined the effects of a 6-wk administration of pioglitazone (45 mg daily) or placebo on the blood pressure, hormonal, and renal hemodynamic and tubular responses to a low (LS) and a high (HS) sodium diet in healthy volunteers. Pioglitazone had no effect on the systemic and renal hemodynamic responses to salt, except for an increase in daytime heart rate. Urinary sodium excretion and lithium clearance were lower with pioglitazone, particularly with the LS diet (P < 0.05), suggesting increased sodium reabsorption at the proximal tubule. Pioglitazone significantly increased plasma renin activity with the LS (P = 0.02) and HS (P = 0.03) diets. Similar trends were observed with aldosterone. Atrial natriuretic levels did not change with pioglitazone. Body weight increased with pioglitazone in most subjects. Pioglitazone stimulates plasma renin activity and favors sodium retention and weight gain in healthy volunteers. These effects could contribute to the development of edema in some subjects treated with glitazones.
Resumo:
Ion imaging is a powerful methodology to assess fundamental biological processes in live cells. The limited efficiency of some ion-sensing probes and their fast leakage from cells are important restrictions to this approach. In this study, we present a novel strategy based on the use of dendrimer nanoparticles to obtain better intracellular retention of fluorescent probes and perform prolonged fluorescence imaging of intracellular ion dynamics. A new sodium-sensitive nanoprobe was generated by encapsulating a sodium dye in a PAMAM dendrimer nanocontainer. This nanoprobe is very stable and has high sodium sensitivity and selectivity. When loaded in neurons in live brain tissue, it homogenously fills the entire cell volume, including small processes, and stays for long durations, with no detectable alterations of cell functional properties. We demonstrate the suitability of this new sodium nanosensor for monitoring physiological sodium responses such as those occurring during neuronal activity.
Resumo:
BACKGROUND: The stimulation of efferent renal sympathetic nerve activity induces sequential changes in renin secretion, sodium excretion, and renal hemodynamics that are proportional to the magnitude of the stimulation of sympathetic nerves. This study in men investigated the sequence of the changes in proximal and distal renal sodium handling, renal and systemic hemodynamics, as well as the hormonal profile occurring during a sustained activation of the sympathetic nervous system induced by various levels of lower body negative pressure (LBNP). METHODS: Ten healthy subjects were submitted to three levels of LBNP ranging between 0 and -22.5 mm Hg for one hour according to a triple crossover design, with a minimum of five days between each level of LBNP. Systemic and renal hemodynamics, renal water and sodium handling (using the endogenous lithium clearance technique), and the neurohormonal profile were measured before, during, and after LBNP. RESULTS: LBNP (0 to -22.5 mm Hg) induced an important hormonal response characterized by a significant stimulation of the sympathetic nervous system and gradual activations of the vasopressin and the renin-angiotensin systems. LBNP also gradually reduced water excretion and increased urinary osmolality. A significant decrease in sodium excretion was apparent only at -22.5 mm Hg. It was independent of any change in the glomerular filtration rate and was mediated essentially by an increased sodium reabsorption in the proximal tubule (a significant decrease in lithium clearance, P < 0.05). No significant change in renal hemodynamics was found at the tested levels of LBNP. As observed experimentally, there appeared to be a clear sequence of responses to LBNP, the neurohormonal response occurring before the changes in water and sodium excretion, these latter preceding any change in renal hemodynamics. CONCLUSIONS: These data show that the renal sodium retention developing during LBNP, and thus sympathetic nervous stimulation, is due mainly to an increase in sodium reabsorption by the proximal segments of the nephron. Our results in humans also confirm that, depending on its magnitude, LBNP leads to a step-by-step activation of neurohormonal, renal tubular, and renal hemodynamic responses.
Resumo:
Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.
Resumo:
PURPOSE: Obesity represents a growing public health concern worldwide. The latest data in Switzerland rely on self-reported body mass index (BMI), leading to underestimation of prevalence. We reassessed the prevalence of obesity and overweight in a sample of the Swiss population using measured BMI and waist circumference (WC) and explored the association with nutritional factors and living in different linguistic-cultural regions. METHODS: Data of 1,505 participants of a cross-sectional population-based survey in the three linguistic regions of Switzerland were analyzed. BMI and WC were measured, and a 24-h urine collection was performed to evaluate dietary sodium, potassium and protein intake. RESULTS: The prevalence of overweight, obesity and abdominal obesity was 32.2, 14.2 and 33.6 %, respectively. Significant differences were observed in the regional distribution, with a lower prevalence in the Italian-speaking population. Low educational level, current smoking, scarce physical activity and being migrant were associated with an higher prevalence of obesity. Sodium, potassium and protein intake increased significantly across BMI categories. CONCLUSIONS: Obesity and overweight affect almost half of the Swiss adolescents and adults, and the prevalence appears to increase. Using BMI and WC to define obesity led to different prevalences. Differences were furthermore observed across Swiss linguistic-cultural regions, despite a common socio-economic and governmental framework. We found a positive association between obesity and salt intake, with a potential deleterious synergistic effect on cardiovascular risk.
Resumo:
Redox-dysregulation represents a common pathogenic mechanism in schizophrenia (SZ) and bipolar disorder (BP). It may in part arise from a genetically compromised synthesis of glutathione (GSH), the major cellular antioxidant and redox-regulator. Allelic variants of the genes coding for the rate-limiting GSH synthesizing enzyme glutamate-cysteine-ligase modifier (GCLM) and/or catalytic (GCLC) subunit have been associated with SZ and BP. Using mice knockout (KO) for GCLM we have previously shown that impaired GSH synthesis is associated with morphological, functional and neurochemical anomalies similar to those in patients. Here we asked whether GSH deficit is also associated with SZ- and BP-relevant behavioral and cognitive anomalies. Accordingly, we subjected young adult GCLM-wildtype (WT), heterozygous and KO males to a battery of standard tests. Compared to WT, GCLM-KO mice displayed hyperlocomotion in the open field and forced swim test but normal activity in the home cage, suggesting that hyperlocomotion was selective to environmental novelty and mildly stressful situations. While spatial working memory and latent inhibition remained unaffected, KO mice showed a potentiated hyperlocomotor response to an acute amphetamine injection, impaired sensorymotor gating in the form of prepulse inhibition and altered social behavior compared to WT. These anomalies resemble important aspects of both SZ and the manic component of BP. As such our data support the notion that redox-dysregulation due to GSH deficit is implicated in both disorders. Moreover, our data propose the GCLM-KO mouse as a valuable model to study the behavioral and cognitive consequences of redox dysregulation in the context of psychiatric disease.
Resumo:
BACKGROUND: Sodium wasting during the night has been postulated as a potential pathophysiological mechanism in patients suffering from orthostatic hypotension due to severe autonomic deficiency. METHODS: In this study, the diurnal variations in creatinine clearance, sodium excretion and segmental renal tubular handling of sodium were evaluated in 18 healthy subjects and 20 young patients with orthostatic hypotension (OH). In addition, 24-hour ambulatory blood pressure and the neuro-hormonal response to changes in posture were determined. The patients and their controls were studied on a free sodium intake. In a second protocol, 10 controls and 10 patients were similarly investigated after one week of a high salt diet (regular diet + 6 g NaCl/day). RESULTS: Our results demonstrate that, in contrast to normal subjects in whom no significant changes in glomerular filtration, sodium excretion and segmental sodium reabsorption were observed throughout the day, patients with OH were characterized by a significant increase in glomerular filtration rate during the nighttime (P = 0.03) and significant increases in urinary lithium excretion (P < 0.05) and lithium clearance (P = 0.05) during the night, suggesting a decreased proximal reabsorption of sodium. On a high sodium diet, the symptoms of orthostatic hypotension and the circadian variations in sodium reabsorption were significantly blunted. CONCLUSIONS: These results suggest that, while the patient is in a supine position the effective blood volume of those with OH becomes excessive due to the increased venous return. Hence, the kidney responds with an increase in glomerular filtration and a relative escape of sodium from the proximal tubular segments. These circadian variations in renal sodium handling may contribute to the maintenance of the orthostatic syndrome.
Resumo:
High-fructose diet stimulates hepatic de novo lipogenesis (DNL) and causes hypertriglyceridemia and insulin resistance in rodents. Fructose-induced insulin resistance may be secondary to alterations of lipid metabolism. In contrast, fish oil supplementation decreases triglycerides and may improve insulin resistance. Therefore, we studied the effect of high-fructose diet and fish oil on DNL and VLDL triglycerides and their impact on insulin resistance. Seven normal men were studied on four occasions: after fish oil (7.2 g/day) for 28 days; a 6-day high-fructose diet (corresponding to an extra 25% of total calories); fish oil plus high-fructose diet; and control conditions. Following each condition, fasting fractional DNL and endogenous glucose production (EGP) were evaluated using [1-13C]sodium acetate and 6,6-2H2 glucose and a two-step hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity. High-fructose diet significantly increased fasting glycemia (7 +/- 2%), triglycerides (79 +/- 22%), fractional DNL (sixfold), and EGP (14 +/- 3%, all P < 0.05). It also impaired insulin-induced suppression of adipose tissue lipolysis and EGP (P < 0.05) but had no effect on whole- body insulin-mediated glucose disposal. Fish oil significantly decreased triglycerides (37%, P < 0.05) after high-fructose diet compared with high-fructose diet without fish oil and tended to reduce DNL but had no other significant effect. In conclusion, high-fructose diet induced dyslipidemia and hepatic and adipose tissue insulin resistance. Fish oil reversed dyslipidemia but not insulin resistance.