955 resultados para shallow acceptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reworked shallow-water foraminifers that settled on the upper slope of the central Great Barrier Reef at Site 821 (water depth, 212.6 m) were used as indicators of the paleoclimatic and paleoenvironmental conditions that have controlled the Pleistocene evolution of the adjacent platform. Throughout the 400-m-thick sequence drilled, the nature, composition, and distribution of the shallow-water foraminiferal assemblages studied indicate that (1) all the species recorded are at present living in diverse tropical, reef-related areas of the Indo-Pacific and Atlantic provinces; (2) the composition of the microfaunal taphocoenoses is almost identical between the different stratigraphic intervals studied and the modern Great Barrier Reef environments; (3) inner-neritic, tropical environments have continued to develop since the middle Pleistocene; (4) high- to moderate-energy platform edges occurred repeatedly throughout Pleistocene time. These factors may suggest that, since the beginning of the Pleistocene, several reef-like tracts have grown successively on the central area of the northeastern Australian shelf edge. These tracts probably had a sufficiently evolved morphological zonation to act as shelters for foraminiferal biocoenoses of high species diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The West Antarctic Peninsula is one of the fastest warming regions on the planet. Faster glacier retreat and related calving events lead to more frequent iceberg scouring, fresh water input and higher sediment loads which may affect benthic marine communities. On the other hand, the appearance of newly formed ice-free areas provides new substrates for colonization. Here we investigated the effect of these conditions on four benthic size classes (microbenthos, meiofauna and macrofauna) using Potter Cove (King George Island, West Antarctic Peninsula) as a case study. We identified three sites within the cove experiencing different levels of glacier retreat-related disturbance. Our results showed the existence of different communities at the same depth over a relatively small distance (about 1 km**2). This suggests glacial activity structures biotic communities over a relatively small spatial scale. In areas with frequent ice scouring and higher sediment accumulation rates, a patchy community, mainly dominated by macrobenthic scavengers (such as Barrukia cristata), vagile organisms, and younger individuals of sessile species (such as Yoldia eigthsi) was found. Meiofauna organisms such as cumaceans are found to be resistant to re-suspension and high sedimentation loads. The nematode genus Microlaimus was found to be successful in the newly exposed ice-free site, confirming its ability as a pioneering colonizer. In general, the different biological size classes appear to respond in different ways to the ongoing disturbances, suggesting that adaptation processes may be size related. Our results suggest that with continued deglaciation, more diverse but less patchy macrobenthic assemblages can become established due to less frequent ice scouring events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources. This article is protected by copyright. All rights reserved.