999 resultados para quantum cascade laser
Resumo:
We report quantum chaos phenomena in the atomic gravitational cavity. We consider the reflection of cold atoms from a temporally modulated evanescent wave. In the globally chaotic regime, for small modulation, the squared energy distribution as a function of time demonstrates dynamical localization. However, for larger modulation delocalization occurs.
Resumo:
We have previously shown that H-1 pulsed-field-gradient (PFG) NMR spectroscopy provides a facile method for monitoring protein self-association and can be used, albeit with some caveats, to measure the apparent molecular mass of the diffusant [Dingley et al. (1995) J. Biomol. NMR, 6, 321-328]. In this paper we show that, for N-15-labelled proteins, selection of H-1-N-15 multiple-quantum (MQ) coherences in PFG diffusion experiments provides several advantages over monitoring H-1 single-quantum (SQ) magnetization. First, the use of a gradient-selected MQ filter provides a convenient means of suppressing resonances from both the solvent and unlabelled solutes. Second, H-1-N-15 zero-quantum coherence dephases more rapidly than H-1 SQ coherence under the influence of a PFG. This allows the diffusion coefficients of larger proteins to be measured more readily. Alternatively, the gradient length and/or the diffusion delay may be decreased, thereby reducing signal losses from relaxation. In order to extend the size of macromolecules to which these experiments can be applied, we have developed a new MQ PFG diffusion experiment in which the magnetization is stored as longitudinal two-spin order for most of the diffusion period, thus minimizing sensitivity losses due to transverse relaxation and J-coupling evolution.
Resumo:
We report experimental studies of metastable chaos in the far-infrared ammonia ring: laser. When the laser pump power is switched from above chaos threshold to slightly below, chaotic intensity pulsations continue for a varying time afterward before decaying to either periodic or cw emission. The behavior is in good qualitative agreement with that predicted by the Lorenz equations, previously used to describe this laser. The statistical distribution of the duration of the chaotic transient is measured and shown to be in excellent agreement with the Lorenz equations in showing a modified exponential distribution. We also give a brief numerical analysis and graphical visualization of the Lorenz equations in phase space illustrating the boundary between the metastable chaotic and the stable fixed point basins of attraction. This provides an intuitive understanding of the metastable dynamics of the Lorenz equations and the experimental system.
Resumo:
The time evolution of the populations of the collective states of a two-atom system in a squeezed vacuum can exhibit quantum beats. We show that the effect appears only when the carrier frequency of the squeezed field is detuned from the atomic resonance. Moreover, we find that the quantum beats are not present for the case in which the two-photon correlation strength is the maximum possible for a field with a classical analog. We also show that the population inversion between the excited collective states, found for the resonant squeezed vacuum, is sensitive to the detuning and the two-photon correlations. For large detunings or a field with a classical analog there is no inversion between the collective states. Observation of the quantum beats or the population inversion would confirm the essentially quantum-mechanical nature of the squeezed vacuum. (C) 1997 Optical Society of America.
Resumo:
We show experimentally that under certain conditions the chaotic intensity dynamics of an optically pumped NH3 bidirectional ring laser could be well described in terms of Shil'nikov homoclinic orbits and chaos. We found that the mechanism that resulted in this kind of dynamics of the laser is the competition between effects caused by the mode interaction between the forward and the backward modes of the laser and by the intrinsic single-mode dynamics of the interacting modes. (C) 1997 Optical Society of America.
Resumo:
Using the method of quantum trajectories we show that a known pure state can be optimally monitored through time when subject to a sequence of discrete measurements. By modifying the way that we extract information from the measurement apparatus we can minimize the average algorithmic information of the measurement record, without changing the unconditional evolution of the measured system. We define an optimal measurement scheme as one which has the lowest average algorithmic information allowed. We also show how it is possible to extract information about system operator averages from the measurement records and their probabilities. The optimal measurement scheme, in the limit of weak coupling, determines the statistics of the variance of the measured variable directly. We discuss the relevance of such measurements for recent experiments in quantum optics.
Resumo:
This paper offers a defense of backwards in time causation models in quantum mechanics. Particular attention is given to Cramer's transactional account, which is shown to have the threefold virtue of solving the Bell problem, explaining the complex conjugate aspect of the quantum mechanical formalism, and explaining various quantum mysteries such as Schrodinger's cat. The question is therefore asked, why has this model not received more attention from physicists and philosophers? One objection given by physicists in assessing Cramer's theory was that it is not testable. This paper seeks to answer this concern by utilizing an argument that backwards causation models entail a fork theory of causal direction. From the backwards causation model together with the fork theory one can deduce empirical predictions. Finally, the objection that this strategy is questionable because of its appeal to philosophy is deflected.
Resumo:
By generalizing the Reshetikhin and Semenov-Tian-Shansky construction to supersymmetric cases, we obtain the Drinfeld current realization for the quantum affine superalgebra U-q[gl(m\n)((1))]. We find a simple coproduct for the quantum current generators and establish the Hopf algebra structure of this super current algebra.
Resumo:
Neuron-glia interaction is involved in physiological function of neurons, however, recent evidences have suggested glial cells as participants in neurotoxic and neurotrophic mechanisms of neurodegenerative/neuroregenerative processes. Laser microdissection offers a unique opportunity to study molecular regulation in specific immunolabeled cell types. However, an adequate protocol to allow morphological and molecular analysis of rodent spinal cord astrocyte, microglia and motoneurons remains a big challenge. In this paper we present a quick method to immunolabel those cells in flash frozen sections to be used in molecular biology analyses after laser microdissection and pressure catapulting.
Resumo:
PURPOSE: To evaluate results of two surface excimer laser refractive surgery techniques-photorefractive keratectomy (PRK) and butterfly laser epithelial keratomileusis (butterfly LASEK). METHODS: A prospective, randomized, double-masked study of 51 patients (102 eyes) who underwent laser refractive surgery. One eye of each patient was randomized to be operated with PRK and the fellow eye with butterfly LASEK Patients were followed for 1 year. RESULTS: No significant difference between groups for distance uncorrected visual acuity (UCVA) (P=.559) was noted. At 1 year, 98% (50 eyes) in the PRK group and 96.1% (49 eyes) in the butterfly LASEK group reached UCVA of 20/20. Predictability, efficacy, safety, and stability were not statistically significant between groups. Safety index was 1.0 for PRK and 0.996 for butterfly LASEK, One eye in the butterfly LASEK group lost one line of best-spectacle corrected visual acuity. At 12 months, 94.1% (48 eyes) and 86.3% (44 eyes) in the PRK and butterfly LASEK groups (P=.188), respectively, had a spherical equivalent refraction of +/- 0.50 diopters. Slight haze was observed in both groups. A statistical difference in haze between the groups was observed only in the first postoperative month, with higher intensity in the butterfly LASEK group (0.18 +/- 0.39) compared to the PRK group (0.08 +/- 0.21) (P=.04). CONCLUSIONS: Butterfly LASEK had similar predictability, efficacy, safety, stability, and haze incidence to PRK for the treatment of low to moderate myopia. However, on the second postoperative day, PRK showed better UCVA than butterfly LASEK.
Resumo:
Aim To compare the ability of scanning laser polarimeter (SLP) with variable corneal compensation (GDx VCC) and optical coherence tomograph (Stratus OCT) to discriminate between eyes with band atrophy (BA) of the optic nerve and healthy eyes. Methods The study included 37 eyes with BA and temporal visual field (VF) defects from chiasmal compression, and 29 normal eyes. Subjects underwent standard automated perimetry (SAP) and retinal nerve fibre layer (RNFL) scans using GDx VCC and Stratus OCT. The severity of the VF defects was evaluated by the temporal mean defect (TMD), calculated as the average of 22 values of the temporal total deviation plot on SAP. Receiver operating characteristic (ROC) curves were calculated. Pearson`s correlation coefficients were used to evaluate the relationship between RNFL thickness parameters and the TMD. Results No significant difference was found between the ROC curves areas (AUCs) for the GDx VCC and Stratus OCT with regard to average RNFL thickness (0.98 and 0.99, respectively) and the superior (0.94; 0.95), inferior (0.96; 0.97), and nasal (0.92; 0.96) quadrants. However, the AUC in the temporal quadrant (0.77) was significantly smaller (P < 0.001) with GDx VCC than with Stratus OCT (0.98). Lower TMD values were associated with smaller RNFL thickness in most parameters from both equipments. Conclusion Adding VCC resulted in improved performance in SLP when evaluating eyes with BA, and both technologies are sensitive in detecting average, superior, inferior, and nasal quadrant RNFL loss. However, GDx VCC still poorly discriminates RNFL loss in the temporal quadrant when compared with Stratus OCT.
Resumo:
PURPOSE: To analyze the effects of variations in femtosecond laser energy level on corneal stromal cell death. and inflammatory cell influx following flap creation in a rabbit model. METHODS: Eighteen rabbits were stratified in three different groups according to level of energy applied for flap creation (six animals per group). Three different energy levels were chosen for both the lamellar and side cut; 2.7 mu J (high energy), 1.6 mu J (intermediate energy), and 0.5 mu J (low energy) with a 60 kHz, model II, femtosecond laser (IntraLase). The opposite eye of each rabbit served as a control. At the 24-hour time point after surgery, all rabbits were euthanized and the comeoscleral rims were analyzed for the levels of cell death and inflammatory cell influx with the terminal uridine deoxynucleotidyl transferase dUTP-nick end labeling (TUNEL) assay and immunocytochemistry for monocyte marker CD11b, respectively. RESULTS: The high energy group (31.9 +/- 7.1 [standard error of mean (SEM) 2.9]) had significantly more TUNEL positive cells in the central flap compared to the intermediate (22.2 +/- 1.9 [SEM 0.8], P=.004), low (17.9 +/- 4.0 [SEM 1.6], P <= .001), and control eye (0.06 +/- 0.02 [SEM 0.009], P <= .001) groups. The intermediate and low energy groups also had significantly more TUNEL positive cells than the control groups (P <= .001). The difference between the intermediate and low energy levels was not significant (P=.56). The mean for CD11b-positive cells/400x field at the flap edge was 26.1 +/- 29.3 (SEM 11.9), 5.8 +/- 4.1 (SEM 1.6), 1.6 +/- 4.1 (SEM 1.6), and 0.005 +/- 0.01 (SEM 0.005) for high energy, intermediate energy, low energy, and control groups, respectively. Only the intermediate energy group showed statistically more inflammatory cells than control eyes (P = .015), most likely due to variability between eyes. CONCLUSIONS: Higher energy levels trigger greater cell death when the femtosecond laser is used to create corneal flaps: Greater corneal inflammatory cell infiltration is observed with higher femtosecond laser energy levels. [J Refract Surg. 2009;25:869-874.] doi:10.3928/1081597X-20090917-08
Resumo:
Therapeutic approaches to chronic actinic cheilitis focus on the removal or destruction of diseased epithelium. The CO(2) laser has become an important therapeutic alternative, achieving clinical resolution in around 90% of patients. Although many laser physical parameters have been reported, some are known for their low potential for scar induction without compromising the success of the results. The aim of this clinicohistological study was to compare the therapeutic responses to two low-morbidity protocols involving a single laser pass. A total of 40 patients with chronic multicentric and microscopically proven disease were randomly submitted to two conservative CO(2) laser protocols using a bilateral comparative model. The degree of histological atypia of the epithelium was determined in 26 patients both pre- and postoperatively for both protocols. Other histological phenomena were assessed in addition to this central analysis parameter. Clinical recurrence occurred in 12.5% of patients for each protocol, together with a significant reduction in the degree of epithelial atypia (p < 0.001), which was occasionally complete. However, no difference was found between the protocols (p > 0.05). Using these morphological parameters it was not possible to determine whether postoperative epithelial atypias in part of the sample were reactive or residual in nature. A few patients may show minor postoperative lesions. Due to their potential to achieve clinical and importantly microscopic resolution, the studied protocols may be used for mild through moderate dysplastic epithelium and clinically diffuse disease.
Resumo:
Sacrococcygeal teratoma (SCT) is the commonest solid fetal tumor. Perinatal prognosis is usually favorable, but sometimes it can be complicated by fetal hydrops being responsible for high risk of mortality. Fetal therapy in such cases has so far not been established. We report a case with a giant solid SCT associated with fetal hydrops and severe heart failure. 2D- and 3D-Doppler ultrasonography revealed great vessels originated from the medial sacral artery. Percutaneous laser ablation of these vessels was performed at 24 weeks of gestation. During the procedure, severe anemia was also diagnosed (hemoglobin 4.3 g/dl). Two days later, the fetus died and pathological examination revealed local tumor necrosis and blood hemorrhage inside the mass. We suggest that in such cases, fetal surgery may not be enough, being too late, and perhaps fetal clinical therapy for anemia and heart failure could be the best option at a gestational age of less than 28 weeks. Copyright (C) 2009 S. Karger AG, Basel