885 resultados para quantum cascade laser


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Nd3+-Yb3+ couple was investigated in fluoroindogallate glasses using optical spectroscopy to elucidate the energy transfer mechanisms involved in the downconversion (DC) process. Upon excitation of a Nd3+ ion by an ultraviolet photon, DC through a three-step energy transfer process occurs, in which the energy of the ultraviolet photon absorbed by the Nd3+ ion is converted into three infrared photons emitted by Yb3+ ions, i.e. quantum cutting (QC). In addition, with excitation in the visible, our results confirm that the DC process occurs through a one-step energy transfer process, in which the energy of a visible photon absorbed by the Nd3+ ion is converted into only one infrared photon emitted by an Yb3+ ion. Time-resolved measurements enabled the estimation of the efficiencies of the cross-relaxation processes between Nd3+ and Yb3+ ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of laser light to modify the material's surface or bulk as well as to induce changes in the volume through a chemical reaction has received great attention in the last few years, due to the possibility of tailoring the material's properties aiming at technological applications. Here, we report on recent progress of microstructuring and microfabrication in polymeric materials by using femtosecond lasers. In the first part, we describe how polymeric materials' micromachining, either on the surface or bulk, can be employed to change their optical and chemical properties promising for fabricating waveguides, resonators, and self-cleaning surfaces. In the second part, we discuss how two-photon absorption polymerization can be used to fabricate active microstructures by doping the basic resin with molecules presenting biological and optical properties of interest. Such microstructures can be used to fabricate devices with applications in optics, such as microLED, waveguides, and also in medicine, such as scaffolds for tissue growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the control of Au nanoparticle (NP) formation by using shaped 30 fs pulses, in a solution containing HAuCl4 and chitosan. By using a sinusoidal spectral phase, a periodic train of pulses is generated. When the period of the pulse train matches certain Raman resonances of chitosan, the reducing agent of the process, an enhancement of the Au NP formation is observed. Theoretical quantum chemical calculations indicate that the outer groups of the chitosan are mostly influenced by low Raman frequencies, which is in reasonably agreement with the experimental data and indicates an enhancement in the Au NP formation as the pulse train period increases (low frequency).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Magnetic Resonance Imaging (MRI) as a diagnostic tool is increasingly employing functional contrast agents to study or contrast entire mechanisms. Contrast agents in MRI can be classified in two categories. One type of contrast agents alters the NMR signal of the protons in its surrounding, e.g. lowers the T1 relaxation time. The other type enhances the Nuclear Magnetic Resonance (NMR) signal of specific nuclei. For hyperpolarized gases the NMR signal is improved up to several orders of magnitude. However, gases have a high diffusivity which strongly influences the NMR signal strength, hence the resolution and appearance of the images. The most interesting question in spatially resolved experiments is of course the achievable resolution and contrast by controlling the diffusivity of the gas. The influence of such diffusive processes scales with the diffusion coefficient, the strength of the magnetic field gradients and the timings used in the experiment. Diffusion may not only limit the MRI resolution, but also distort the line shape of MR images for samples, which contain boundaries or diffusion barriers within the sampled space. In addition, due to the large polarization in gaseous 3He and 129Xe, spin diffusion (different from particle diffusion) could play a role in MRI experiments. It is demonstrated that for low temperatures some corrections to the NMR measured diffusion coefficient have to be done, which depend on quantum exchange effects for indistinguishable particles. Physically, if these effects can not change the spin current, they can do it indirectly by modifying the velocity distribution of the different spin states separately, so that the subsequent collisions between atoms and therefore the diffusion coefficient can eventually be affected. A detailed study of the hyperpolarized gas diffusion coefficient is presented, demonstrating the absence of spin diffusion (different from particle diffusion) influence in MRI at clinical conditions. A novel procedure is proposed to control the diffusion coefficient of gases in MRI by admixture of inert buffer gases. The experimental measured diffusion agrees with theoretical simulations. Therefore, the molecular mass and concentration enter as additional parameters into the equations that describe structural contrast. This allows for setting a structural threshold up to which structures contribute to the image. For MRI of the lung this allows for images of very small structural elements (alveoli) only, or in the other extreme, all airways can be displayed with minimal signal loss due to diffusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La realizzazione di stati non classici del campo elettromagnetico e in sistemi di spin è uno stimolo alla ricerca, teorica e sperimentale, da almeno trent'anni. Lo studio di atomi freddi in trappole di dipolo permette di avvicinare questo obbiettivo oltre a offrire la possibilità di effettuare esperimenti su condesati di Bose Einstein di interesse nel campo dell'interferometria atomica. La protezione della coerenza di un sistema macroscopico di spin tramite sistemi di feedback è a sua volta un obbiettivo che potrebbe portare a grandi sviluppi nel campo della metrologia e dell'informazione quantistica. Viene fornita un'introduzione a due tipologie di misura non considerate nei programmi standard di livello universitario: la misura non distruttiva (Quantum Non Demolition-QND) e la misura debole. Entrambe sono sfruttate nell'ambito dell'interazione radiazione materia a pochi fotoni o a pochi atomi (cavity QED e Atom boxes). Una trattazione delle trappole di dipolo per atomi neutri e ai comuni metodi di raffreddamento è necessaria all'introduzione all'esperimento BIARO (acronimo francese Bose Einstein condensate for Atomic Interferometry in a high finesse Optical Resonator), che si occupa di metrologia tramite l'utilizzo di condensati di Bose Einstein e di sistemi di feedback. Viene descritta la progettazione, realizzazione e caratterizzazione di un servo controller per la stabilizzazione della potenza ottica di un laser. Il dispositivo è necessario per la compensazione del ligh shift differenziale indotto da un fascio laser a 1550nm utilizzato per creare una trappola di dipolo su atomi di rubidio. La compensazione gioca un ruolo essenziale nel miglioramento di misure QND necessarie, in uno schema di feedback, per mantenere la coerenza in sistemi collettivi di spin, recentemente realizzato.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we demonstrate the use of a colloidal CdSe:Te quantum dots suspension as active liquid-core in a specially designed optical element, based on a double-clad optical fiber structure. The liquid-core fiber was realized by filling the hollow core of a capillary and waveguiding of the core was ensured by using a liquid host that exhibits a larger refractive index than the cladding material of the capillary. Since the used capillary possessed a cladding waveguide structure, we obtained a liquid-core double-clad structure. To seal the liquid-core fiber and e.g. prevent the formation of bubbles, we developed a technique based on SMA connectors. The colloidal CdSe:Te quantum dots were excited by cladding-pumping using a pump laser at 532nm operating in the continuous-wave regime. We investigated the photoluminescence emitted from the colloidal CdSe:Te quantum dots suspension liquid-core and guided by the double-clad fiber structure. We observed a red shift of the (core) emission, that depends on the liquid-core fiber length and the pump power. This shift is due to the absorption of unexcited colloidal quantum dots and due to the waveguiding properties of the core. Here we report a core photoluminescence output power of 79.2μW (with an integrated brightness of ≈ 215.5 W/cm2sr ). Finally, we give an explanation, why lasing could not be observed in our experiments when setup as a liquid-core fiber cavity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies of Schwinger pair production have demonstrated that the asymptotic particle spectrum is extremely sensitive to the applied field profile. We extend the idea of the dynamically assisted Schwinger effect from single pulse profiles to more realistic field configurations to be generated in an all-optical experiment searching for pair creation. We use the quantum kinetic approach to study the particle production and employ a multi-start method, combined with optimal control theory, to determine a set of parameters for which the particle yield in the forward direction in momentum space is maximized. We argue that this strategy can be used to enhance the signal of pair production on a given detector in an experimental setup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of the torsional angles of nonrigid molecules is key for the development of emerging areas like molecular electronics and nanotechnology. Based on a rigorous calculation of the rotation-torsion-Stark energy levels of nonrigid biphenyl-like molecules, we show that, unlike previously believed, instantaneous rotation-torsion-Stark eigenstates of such molecules, interacting with a strong laser field, present a large degree of delocalization in the torsional coordinate even for the lowest energy states. This is due to a strong coupling between overall rotation and torsion leading to a breakdown of the torsional alignment. Thus, adiabatic control of changes on the planarity of this kind of molecule is essentially impossible unless the temperature is on the order of a few Kelvin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled InGaAs quantum dots show unique physical properties such as three dimensional confinement, high size homogeneity, high density and low number of dislocations. They have been extensively used in the active regions of laser devices for optical communications applications [1]. Therefore, buried quantum dots (BQDs) embedded in wider band gap materials have been normally studied. The wave confinement in all directions and the stress field around the dot affect both optical and electrical properties [2, 3]. However, surface quantum dots (SQDs) are less affected by stress, although their optical and electrical characteristics have a strong dependence on surface fluctuation. Thus, they can play an important role in sensor applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen isotopes play a critical role both in inertial and magnetic confinemen Nuclear Fusion. Since the preferent fuel needed for this technology is a mixture of deuterium and tritium. The study of these isotopes particularly at very low temperatures carries a technological interest in other applications. The present line promotes a deep study on the structural configuration that hydrogen and deuterium adopt at cryogenic temperatures and at high pressures. Typical conditions occurring in present Inertial Fusion target designs. Our approach is aims to determine the crystal structure characteristics, phase transitions and other parameters strongly correlated to variations of temperature and pressure.