879 resultados para power system simulation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho estuda a interação entre os métodos anti-ilhamento aplicados em sistemas fotovoltaicos residenciais, operando simultaneamente em uma rede de distribuição de baixa tensão. Os sistemas fotovoltaicos em geral interagem entre si, com a rede de distribuição da concessionária e com outras fontes de geração distribuída. Uma consequência importante dessa interação é a ocorrência do ilhamento, que acontece quando as fontes de geração distribuída fornecem energia ao sistema elétrico de potência mesmo quando esta se encontra eletricamente isolada do sistema elétrico principal. A função anti-ilhamento é uma proteção extremamente importante, devendo estar presente em todos os sistemas de geração distribuída. Atualmente, são encontradas diversas técnicas na literatura. Muitas delas oferecem proteção adequada quando um inversor está conectado à linha de distribuição, mas podem falhar quando dois ou mais funcionam simultaneamente, conectados juntos ou próximos entre si. Dois destes métodos são analisados detalhadamente nesse estudo, avaliados em uma rede de distribuição residencial de baixa tensão. Os resultados obtidos mostram que a influência de um método sobre o outro é dependente da predominância de cada um deles dentro do sistema elétrico. Contudo, nas condições analisadas o ilhamento foi detectado dentro do limite máximo estabelecido pelas normas pertinentes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

É importante que as redes elétricas tenham altos índices de confiabilidade, de forma a se manter a agilidade e a manutenção ideais para um melhor funcionamento. Por outro lado, o crescimento inesperado da carga, falhas em equipamentos e uma parametrização inadequada das funções de proteção tornam a análise de eventos de proteção mais complexas e demoradas. Além disso, a quantidade de informações que pode ser obtida de relés digitais modernos tem crescido constantemente. Para que seja possível uma rápida tomada de decisão e manutenção, esse projeto de pesquisa teve como objetivo a implementação de um sistema completo de diagnóstico que é ativado automaticamente quando um evento de proteção ocorrer. As informações a serem analisadas são obtidas de uma base de dados e de relés de proteção, via protocolo de comunicação IEC 61850 e arquivos de oscilografia. O trabalho aborda o sistema Smart Grid completo incluindo: a aquisição de dados nos relés, detalhando o sistema de comunicação desenvolvido através de um software com um cliente IEC61850 e um servidor OPC e um software com um cliente OPC, que é ativado por eventos configurados para dispará-lo (por exemplo, atuação da proteção); o sistema de pré-tratamento de dados, onde os dados provenientes dos relés e equipamentos de proteção são filtrados, pré-processados e formatados; e o sistema de diagnóstico. Um banco de dados central mantém atualizados os dados de todas essas etapas. O sistema de diagnóstico utiliza algoritmos convencionais e técnicas de inteligência artificial, em particular, um sistema especialista. O sistema especialista foi desenvolvido para lidar com diferentes conjuntos de dados de entrada e com uma possível falta de dados, sempre garantindo a entrega de diagnósticos. Foram realizados testes e simulações para curtos-circuitos (trifásico, dupla-fase, dupla-fase-terra e fase-terra) em alimentadores, transformadores e barras de uma subestação. Esses testes incluíram diferentes estados do sistema de proteção (funcionamento correto e impróprio). O sistema se mostrou totalmente eficaz tanto no caso de disponibilidade completa quanto parcial de informações, sempre fornecendo um diagnóstico do curto-circuito e analisando o funcionamento das funções de proteção da subestação. Dessa forma, possibilita-se uma manutenção muito mais eficiente pelas concessionárias de energia, principalmente no que diz respeito à prevenção de defeitos em equipamentos, rápida resposta a problemas, e necessidade de reparametrização das funções de proteção. O sistema foi instalado com sucesso em uma subestação de distribuição da Companhia Paulista de Força e Luz.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Short-term load forecasting of power system has been a classic problem for a long time. Not merely it has been researched extensively and intensively, but also a variety of forecasting methods has been raised. This thesis outlines some aspects and functions of smart meter. It also presents different policies and current statuses as well as future projects and objectives of SG development in several countries. Then the thesis compares main aspects about latest products of smart meter from different companies. Lastly, three types of prediction models are established in MATLAB to emulate the functions of smart grid in the short-term load forecasting, and then their results are compared and analyzed in terms of accuracy. For this thesis, more variables such as dew point temperature are used in the Neural Network model to achieve more accuracy for better short-term load forecasting results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hosni Mubarak’s regime and its power system enjoyed remarkable stability for over 30 years. On 11 February 2011, after 18 days of mass protests, the Egyptian president was forced to step down, revealing the unsustainability of the political and economic system that had ensured his continuity for so long. While the revolution of January 25th led to a major success – the fall of Hosni Mubarak – Egypt’s political future is still opaque and exposed to a number of risks. This paper first highlights the factors underpinning the former stability of Mubarak’s regime; it then assesses the causes of its underlying unsustainability, leading to the anti-government popular mobilisation in January-February 2011 and the removal of Mubarak; finally the paper evaluates the prospects for a genuine democratic transition in Egypt, by looking at the main political and socio-economic challenges facing the country.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

European Union energy policy calls for nothing less than a profound transformation of the EU's energy system: by 2050 decarbonised electricity generation with 80-95% fewer greenhouse gas emissions, increased use of renewables, more energy efficiency, a functioning energy market and increased security of supply are to be achieved. Different EU policies (e.g., EU climate and energy package for 2020) are intended to create the political and regulatory framework for this transformation. The sectorial dynamics resulting from these EU policies already affect the systems of electricity generation, transportation and storage in Europe, and the more effective the implementation of new measures the more the structure of Europe's power system will change in the years to come. Recent initiatives such as the 2030 climate/energy package and the Energy Union are supposed to keep this dynamic up. Setting new EU targets, however, is not necessarily the same as meeting them. The impact of EU energy policy is likely to have considerable geo-economic implications for individual member states: with increasing market integration come new competitors; coal and gas power plants face new renewable challengers domestically and abroad; and diversification towards new suppliers will result in new trade routes, entry points and infrastructure. Where these implications are at odds with powerful national interests, any member state may point to Article 194, 2 of the Lisbon Treaty and argue that the EU's energy policy agenda interferes with its given right to determine the conditions for exploiting its energy resources, the choice between different energy sources and the general structure of its energy supply. The implementation of new policy initiatives therefore involves intense negotiations to conciliate contradicting interests, something that traditionally has been far from easy to achieve. In areas where this process runs into difficulties, the transfer of sovereignty to the European level is usually to be found amongst the suggested solutions. Pooling sovereignty on a new level, however, does not automatically result in a consensus, i.e., conciliate contradicting interests. Rather than focussing on the right level of decision making, European policy makers need to face the (inconvenient truth of) geo-economical frictions within the Union that make it difficult to come to an arrangement. The reminder of this text explains these latter, more structural and sector-related challenges for European energy policy in more detail, and develops some concrete steps towards a political and regulatory framework necessary to overcome them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a new low-complexity multicarrier modulation (MCM) technique based on lattices which achieves a peak-to-average power ratio (PAR) as low as three. The scheme can be viewed as a drop in replacement for the discrete multitone (DMT) modulation of an asymmetric digital subscriber line modem. We show that the lattice-MCM retains many of the attractive features of sinusoidal-MCM, and does so with lower implementation complexity, O(N), compared with DMT, which requires O(N log N) operations. We also present techniques for narrowband interference rejection and power profiling. Simulation studies confirm that performance of the lattice-MCM is superior, even compared with recent techniques for PAR reduction in DMT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects was investigated. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. In addition, we have included the electrical and optical noise in our analysis to give more accurate overall performance of the FSOI system. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain an overall signal-to-noise ratio improvement of 3 dB. Furthermore, system density is increased by up to 4 channels/mm2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain the reduction in the stray-light crosstalk of up to 9 dB and an overall signal-to-noise ratio improvement of 3 dB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a method to analyze the first order eigenvalue sensitivity with respect to the operating parameters of a power system. The method is based on explicitly expressing the system state matrix into sub-matrices. The eigenvalue sensitivity is calculated based on the explicitly formed system state matrix. The 4th order generator model and 4th order exciter system model are used to form the system state matrix. A case study using New England 10-machine 39-bus system is provided to demonstrate the effectiveness of the proposed method. This method can be applied into large scale power system eigenvalue sensitivity with respect to operating parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a new differential evolution (DE) based power system optimal available transfer capability (ATC) assessment is presented. Power system total transfer capability (TTC) is traditionally solved by the repeated power flow (RPF) method and the continuation power flow (CPF) method. These methods are based on the assumption that the productions of the source area generators are increased in identical proportion to balance the load increment in the sink area. A new approach based on DE algorithm to generate optimal dispatch both in source area generators and sink area loads is proposed in this paper. This new method can compute ATC between two areas with significant improvement in accuracy compared with the traditional RPF and CPF based methods. A case study using a 30 bus system is given to verify the efficiency and effectiveness of this new DE based ATC optimization approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grid computing is an advanced technique for collaboratively solving complicated scientific problems using geographically and organisational dispersed computational, data storage and other recourses. Application of grid computing could provide significant benefits to all aspects of power system that involves using computers. Based on our previous research, this paper presents a novel grid computing approach for probabilistic small signal stability (PSSS) analysis in electric power systems with uncertainties. A prototype computing grid is successfully implemented in our research lab to carry out PSSS analysis on two benchmark systems. Comparing to traditional computing techniques, the gird computing has given better performances for PSSS analysis in terms of computing capacity, speed, accuracy and stability. In addition, a computing grid framework for power system analysis has been proposed based on the recent study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ancillary service plays a key role in maintaining operation security of the power system in a competitive electricity market. The spinning reserve is one of the most important ancillary services that should be provided effectively. This paper presents the design of an integrated market for energy and spinning reserve service with particular emphasis on coordinated dispatch of bulk power and spinning reserve services. A new market dispatching mechanism has been developed to minimize the cost of service while maintaining system security. Genetic algorithms (GA) are used for finding the global optimal solutions for this dispatch problem. Case studies and corresponding analyses have been carried out to demonstrate and discuss the efficiency and usefulness of the proposed method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims at modeling power consumption at the nodes of a Wireless Sensor Network (WSN). For doing so, a finite state machine was implemented by means of SystemC-AMS and Stateflow modeling and simulation tools. In order to achieve this goal, communication data in a WSN were collected. Based on the collected data, a simulation environment for power consumption characterization, which aimed at describing the network operation, was developed. Other than performing power consumption simulation, this environment also takes into account a discharging model as to analyze the battery charge level at any given moment. Such analysis result in a graph illustrating the battery voltage variations as well as its state of charge (SOC). Finally, a case study of the WSN power consumption aims to analyze the acquisition mode and network data communication. With this analysis, it is possible make adjustments in node-sensors to reduce the total power consumption of the network.