766 resultados para parallel hybrid
Resumo:
Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.
Resumo:
This thesis defines Pi, a parallel architecture interface that separates model and machine issues, allowing them to be addressed independently. This provides greater flexibility for both the model and machine builder. Pi addresses a set of common parallel model requirements including low latency communication, fast task switching, low cost synchronization, efficient storage management, the ability to exploit locality, and efficient support for sequential code. Since Pi provides generic parallel operations, it can efficiently support many parallel programming models including hybrids of existing models. Pi also forms a basis of comparison for architectural components.
Resumo:
This report addresses the problem of acquiring objects using articulated robotic hands. Standard grasps are used to make the problem tractable, and a technique is developed for generalizing these standard grasps to increase their flexibility to variations in the problem geometry. A generalized grasp description is applied to a new problem situation using a parallel search through hand configuration space, and the result of this operation is a global overview of the space of good solutions. The techniques presented in this report have been implemented, and the results are verified using the Salisbury three-finger robotic hand.
Resumo:
Scheduling tasks to efficiently use the available processor resources is crucial to minimizing the runtime of applications on shared-memory parallel processors. One factor that contributes to poor processor utilization is the idle time caused by long latency operations, such as remote memory references or processor synchronization operations. One way of tolerating this latency is to use a processor with multiple hardware contexts that can rapidly switch to executing another thread of computation whenever a long latency operation occurs, thus increasing processor utilization by overlapping computation with communication. Although multiple contexts are effective for tolerating latency, this effectiveness can be limited by memory and network bandwidth, by cache interference effects among the multiple contexts, and by critical tasks sharing processor resources with less critical tasks. This thesis presents techniques that increase the effectiveness of multiple contexts by intelligently scheduling threads to make more efficient use of processor pipeline, bandwidth, and cache resources. This thesis proposes thread prioritization as a fundamental mechanism for directing the thread schedule on a multiple-context processor. A priority is assigned to each thread either statically or dynamically and is used by the thread scheduler to decide which threads to load in the contexts, and to decide which context to switch to on a context switch. We develop a multiple-context model that integrates both cache and network effects, and shows how thread prioritization can both maintain high processor utilization, and limit increases in critical path runtime caused by multithreading. The model also shows that in order to be effective in bandwidth limited applications, thread prioritization must be extended to prioritize memory requests. We show how simple hardware can prioritize the running of threads in the multiple contexts, and the issuing of requests to both the local memory and the network. Simulation experiments show how thread prioritization is used in a variety of applications. Thread prioritization can improve the performance of synchronization primitives by minimizing the number of processor cycles wasted in spinning and devoting more cycles to critical threads. Thread prioritization can be used in combination with other techniques to improve cache performance and minimize cache interference between different working sets in the cache. For applications that are critical path limited, thread prioritization can improve performance by allowing processor resources to be devoted preferentially to critical threads. These experimental results show that thread prioritization is a mechanism that can be used to implement a wide range of scheduling policies.
Resumo:
This thesis presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the Parallel Coupled Micro-Macro Actuator, or PaCMMA. In this system, the micro-actuator is capable of high bandwidth force control due to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft and increases the dynamic range of force. Performance improvement over single actuator systems was expected in force control, impedance control, force distortion and reduction of transient impact forces. A set of quantitative measures is proposed and the actuator system is evaluated against them: Force Control Bandwidth, Position Bandwidth, Dynamic Range, Impact Force, Impedance ("Backdriveability'"), Force Distortion and Force Performance Space. Several theoretical performance limits are derived from the saturation limits of the system. A control law is proposed and control system performance is compared to the theoretical limits. A prototype testbed was built using permanenent magnet motors and an experimental comparison was performed between this actuator concept and two single actuator systems. The following performance was observed: Force bandwidth of 56Hz, Torque Dynamic Range of 800:1, Peak Torque of 1040mNm, Minimum Torque of 1.3mNm. Peak Impact Force was reduced by an order of magnitude. Distortion at small amplitudes was reduced substantially. Backdriven impedance was reduced by 2-3 orders of magnitude. This actuator system shows promise for manipulator design as well as psychophysical tests of human performance.
Resumo:
All intelligence relies on search --- for example, the search for an intelligent agent's next action. Search is only likely to succeed in resource-bounded agents if they have already been biased towards finding the right answer. In artificial agents, the primary source of bias is engineering. This dissertation describes an approach, Behavior-Oriented Design (BOD) for engineering complex agents. A complex agent is one that must arbitrate between potentially conflicting goals or behaviors. Behavior-oriented design builds on work in behavior-based and hybrid architectures for agents, and the object oriented approach to software engineering. The primary contributions of this dissertation are: 1.The BOD architecture: a modular architecture with each module providing specialized representations to facilitate learning. This includes one pre-specified module and representation for action selection or behavior arbitration. The specialized representation underlying BOD action selection is Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) reactive plans. 2.The BOD development process: an iterative process that alternately scales the agent's capabilities then optimizes the agent for simplicity, exploiting tradeoffs between the component representations. This ongoing process for controlling complexity not only provides bias for the behaving agent, but also facilitates its maintenance and extendibility. The secondary contributions of this dissertation include two implementations of POSH action selection, a procedure for identifying useful idioms in agent architectures and using them to distribute knowledge across agent paradigms, several examples of applying BOD idioms to established architectures, an analysis and comparison of the attributes and design trends of a large number of agent architectures, a comparison of biological (particularly mammalian) intelligence to artificial agent architectures, a novel model of primate transitive inference, and many other examples of BOD agents and BOD development.
Resumo:
The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.
Optimal Methodology for Synchronized Scheduling of Parallel Station Assembly with Air Transportation
Resumo:
We present an optimal methodology for synchronized scheduling of production assembly with air transportation to achieve accurate delivery with minimized cost in consumer electronics supply chain (CESC). This problem was motivated by a major PC manufacturer in consumer electronics industry, where it is required to schedule the delivery requirements to meet the customer needs in different parts of South East Asia. The overall problem is decomposed into two sub-problems which consist of an air transportation allocation problem and an assembly scheduling problem. The air transportation allocation problem is formulated as a Linear Programming Problem with earliness tardiness penalties for job orders. For the assembly scheduling problem, it is basically required to sequence the job orders on the assembly stations to minimize their waiting times before they are shipped by flights to their destinations. Hence the second sub-problem is modelled as a scheduling problem with earliness penalties. The earliness penalties are assumed to be independent of the job orders.
Resumo:
by Dennis Arthur Burianek.
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
This paper surveys control architectures proposed in the literature and describes a control architecture that is being developed for a semi-autonomous underwater vehicle for intervention missions (SAUVIM) at the University of Hawaii. Conceived as hybrid, this architecture has been organized in three layers: planning, control and execution. The mission is planned with a sequence of subgoals. Each subgoal has a related task supervisor responsible for arranging a set of pre-programmed task modules in order to achieve the subgoal. Task modules are the key concept of the architecture. They are the main building blocks and can be dynamically re-arranged by the task supervisor. In our architecture, deliberation takes place at the planning layer while reaction is dealt through the parallel execution of the task modules. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment