867 resultados para optimal reactive dispatch


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though patients who develop ischemic stroke despite taking antiplatelet drugs represent a considerable proportion of stroke hospital admissions, there is a paucity of data from investigational studies regarding the most suitable therapeutic intervention. There have been no clinical trials to test whether increasing the dose or switching antiplatelet agents reduces the risk for subsequent events. Certain issues have to be considered in patients managed for a first or recurrent stroke while receiving antiplatelet agents. Therapeutic failure may be due to either poor adherence to treatment, associated co-morbid conditions and diminished antiplatelet effects (resistance to treatment). A diagnostic work up is warranted to identify the etiology and underlying mechanism of stroke, thereby guiding further management. Risk factors (including hypertension, dyslipidemia and diabetes) should be treated according to current guidelines. Aspirin or aspirin plus clopidogrel may be used in the acute and early phase of ischemic stroke, whereas in the long-term, antiplatelet treatment should be continued with aspirin, aspirin/extended release dipyridamole or clopidogrel monotherapy taking into account tolerance, safety, adherence and cost issues. Secondary measures to educate patients about stroke, the importance of adherence to medication, behavioral modification relating to tobacco use, physical activity, alcohol consumption and diet to control excess weight should also be implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A collaborative study on Raman spectroscopy and microspectrophotometry (MSP) was carried out by members of the ENFSI (European Network of Forensic Science Institutes) European Fibres Group (EFG) on different dyed cotton fabrics. The detection limits of the two methods were tested on two cotton sets with a dye concentration ranging from 0.5 to 0.005% (w/w). This survey shows that it is possible to detect the presence of dye in fibres with concentrations below that detectable by the traditional methods of light microscopy and microspectrophotometry (MSP). The MSP detection limit for the dyes used in this study was found to be a concentration of 0.5% (w/w). At this concentration, the fibres appear colourless with light microscopy. Raman spectroscopy clearly shows a higher potential to detect concentrations of dyes as low as 0.05% for the yellow dye RY145 and 0.005% for the blue dye RB221. This detection limit was found to depend both on the chemical composition of the dye itself and on the analytical conditions, particularly the laser wavelength. Furthermore, analysis of binary mixtures of dyes showed that while the minor dye was detected at 1.5% (w/w) (30% of the total dye concentration) using microspectrophotometry, it was detected at a level as low as 0.05% (w/w) (10% of the total dye concentration) using Raman spectroscopy. This work also highlights the importance of a flexible Raman instrument equipped with several lasers at different wavelengths for the analysis of dyed fibres. The operator and the set up of the analytical conditions are also of prime importance in order to obtain high quality spectra. Changing the laser wavelength is important to detect different dyes in a mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attractive treatment of cancer consists in inducing tumor-eradicating CD8(+) CTL specific for tumor-associated Ags, such as NY-ESO-1 (ESO), a strongly immunogenic cancer germ line gene-encoded tumor-associated Ag, widely expressed on diverse tumors. To establish optimal priming of ESO-specific CTL and to define critical vaccine variables and mechanisms, we used HLA-A2/DR1 H-2(-/-) transgenic mice and sequential immunization with immunodominant DR1- and A2-restricted ESO peptides. Immunization of mice first with the DR1-restricted ESO(123-137) peptide and subsequently with mature dendritic cells (DCs) presenting this and the A2-restriced ESO(157-165) epitope generated abundant, circulating, high-avidity primary and memory CD8(+) T cells that efficiently killed A2/ESO(157-165)(+) tumor cells. This prime boost regimen was superior to other vaccine regimes and required strong Th1 cell responses, copresentation of MHC class I and MHC class II peptides by the same DC, and resulted in upregulation of sphingosine 1-phosphate receptor 1, and thus egress of freshly primed CD8(+) T cells from the draining lymph nodes into circulation. This well-defined system allowed detailed mechanistic analysis, which revealed that 1) the Th1 cytokines IFN-gamma and IL-2 played key roles in CTL priming, namely by upregulating on naive CD8(+) T cells the chemokine receptor CCR5; 2) the inflammatory chemokines CCL4 (MIP-1beta) and CCL3 (MIP-1alpha) chemoattracted primed CD4(+) T cells to mature DCs and activated, naive CD8(+) T cells to DC-CD4 conjugates, respectively; and 3) blockade of these chemokines or their common receptor CCR5 ablated priming of CD8(+) T cells and upregulation of sphingosine 1-phosphate receptor 1. These findings provide new opportunities for improving T cell cancer vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis membrane filtration of paper machnie clear filtrate was studied. The aim of the study was to find membrane processes which are able to produce economically water of sufficient purity from paper machine white water or its saveall clarified fractions for reuse in the paper machnie short circulation. Factors affecting membrane fouling in this application were also studied. The thesis gives an overview af experiments done on a laboratory and a pilot scale with several different membranes and membrane modules. The results were judged by the obtained flux, the fouling tendency and the permeate quality assessed with various chemical analyses. It was shown that membrane modules which used a turbulence promotor of some kind gave the highest fluexes. However, the results showed that the greater the reduction in the concentration polarisation layer caused by increased turbulence in the module, the smaller the reductions in measured substances. Out of the micro-, ultra- and nanofiltration membranes tested, only nanofiltration memebranes produced permeate whose quality was very close to that of the chemically treated raw water used as fresh water in most paper mills today and which should thus be well suited for reuse as shower water both in the wire and press section. It was also shown that a one stage nanofiltration process was more effective than processes in which micro- or ultrafiltration was used as pretreatment for nanofiltration. It was generally observed that acidic pH, high organic matter content, the presence of multivalent ions, hydrophobic membrane material and high membrane cutoff increased the fouling tendency of the membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To identify risk factors associated with mortality in patients with severe community-acquired pneumonia (CAP) caused by S. pneumoniae who require intensive care unit (ICU) management, and to assess the prognostic values of these risk factors at the time of admission. METHODS: Retrospective analysis of all consecutive patients with CAP caused by S. pneumoniae who were admitted to the 32-bed medico-surgical ICU of a community and referral university hospital between 2002 and 2011. Univariate and multivariate analyses were performed on variables available at admission. RESULTS: Among the 77 adult patients with severe CAP caused by S. pneumoniae who required ICU management, 12 patients died (observed mortality rate 15.6 %). Univariate analysis indicated that septic shock and low C-reactive protein (CRP) values at admission were associated with an increased risk of death. In a multivariate model, after adjustment for age and gender, septic shock [odds ratio (OR), confidence interval 95 %; 4.96, 1.11-22.25; p = 0.036], and CRP (OR 0.99, 0.98-0.99 p = 0.034) remained significantly associated with death. Finally, we assessed the discriminative ability of CRP to predict mortality by computing its receiver operating characteristic curve. The CRP value cut-off for the best sensitivity and specificity was 169.5 mg/L to predict hospital mortality with an area under the curve of 0.72 (0.55-0.89). CONCLUSIONS: The mortality of patients with S. pneumoniae CAP requiring ICU management was much lower than predicted by severity scores. The presence of septic shock and a CRP value at admission <169.5 mg/L predicted a fatal outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Literature on medical dispatch is growing, focusing mainly on efficiency (under and overtriage) and dispatch-assisted CPR. But the issue of population catchment size, functional costs and rationalization is rarely addressed. If we can observe a trend toward a decreasing number of dispatch centres in many European countries, there is today no evidence on what is the right catchment size to reach the best balance between quality of services and costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced Recovery After Surgery (ERAS) is a multimodal, standardized and evidence-based perioperative care pathway. With ERAS, postoperative complications are significantly lowered, and, as a secondary effect, length of hospital stay and health cost are reduced. The patient recovers better and faster allowing to reduce in addition the workload of healthcare providers. Despite the hospital discharge occurs sooner, there is no increased charge of the outpatient care. ERAS can be safely applied to any patient by a tailored approach. The general practitioner plays an essential role in ERAS by assuring the continuity of the information and the follow-up of the patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present research we have set forth a new, simple, Trade-Off model that would allow us to calculate how much debt and, by default, how much equity a company should have, using easily available information and calculating the cost of debt dynamically on the basis of the effect that the capital structure of the company has on the risk of bankruptcy; in an attempt to answer this question. The proposed model has been applied to the companies that make up the Dow Jones Industrial Average (DJIA) in 2007. We have used consolidated financial data from 1996 to 2006, published by Bloomberg. We have used simplex optimization method to find the debt level that maximizes firm value. Then, we compare the estimated debt with real debt of companies using statistical nonparametric Mann-Whitney. The results indicate that 63% of companies do not show a statistically significant difference between the real and the estimated debt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Psychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant Analysis, and Mutual Information. In order to address frequency dependence, discriminabilities were measured as a function of (filtered) image size. All three measures revealed a maximum at the same image sizes, where the spatial frequency content corresponds to the psychophysical found frequencies. Our results therefore support the notion that the critical band of spatial frequencies for face recognition in humans and machines follows from inherent properties of face images, and that the use of these frequencies is associated with optimal face recognition performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lack of electroencephalography (EEG) background reactivity during therapeutic hypothermia (TH) has been associated with poor outcome in post-anoxic comatose patients. However, decision on intensive care withdrawal is based on normothermic (NT) evaluations. This study aims at exploring whether patients showing recovery of EEG reactivity in NT after a non-reactive EEG in TH differ from those remaining non-reactive. METHODS: Patients with non-reactive EEG during TH were identified from our prospective registry of consecutive comatose adults admitted after successful resuscitation from CA between April 2009 and June 2014. Variables including neurological examination, serum neuron-specific enolase (NSE), procalcitonin, and EEG features were compared regarding impact on functional outcome at 3 months. RESULTS: Seventy-two of 197 patients (37 %) had a non-reactive EEG background during TH with thirteen (18 %) evolving towards reactivity in NT. Compared to those remaining non-reactive (n = 59), they showed significantly better recovery of brainstem reflexes (p < 0.001), better motor responses (p < 0.001), transitory consciousness improvement (p = 0.008), and a tendency toward lower NSE (p = 0.067). One patient recovering EEG reactivity survived with good functional outcome at 3 months. CONCLUSIONS: Recovery of EEG reactivity from TH to NT seems to distinguish two patients' subgroups regarding early neurological assessment and transitory consciousness improvement, corroborating the role of EEG in providing information about cerebral functions. Understanding these dynamic changes encourages maintenance of intensive support in selected patients even after a non-reactive EEG background in TH, as a small subgroup may indeed recover with good functional outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest interest for adoptive cell therapy in patients with cancer. To identify these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni(2+)-nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole addition, they decay rapidly to pMHC monomers, allowing flow-cytometric-based measurements of monomeric TCR-pMHC dissociation rates of living CD8(+) T cells on a wide avidity spectrum. We documented strong correlations between NTAmer kinetic results and those obtained by surface plasmon resonance. Using NTAmers that were deficient for CD8 binding to pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the dissociation half-life several fold. Notably, our NTAmer technology accurately predicted the function of large panels of tumor-specific T cells that were isolated prospectively from patients with cancer. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineered nanomaterials (ENMs) exhibit special physicochemical properties and thus are finding their way into an increasing number of industries, enabling products with improved properties. Their increased use brings a greater likelihood of exposure to the nanoparticles (NPs) that could be released during the life cycle of nano-abled products. The field of nanotoxicology has emerged as a consequence of the development of these novel materials, and it has gained ever more attention due to the urgent need to gather information on exposure to them and to understand the potential hazards they engender. However, current studies on nanotoxicity tend to focus on pristine ENMs, and they use these toxicity results to generalize risk assessments on human exposure to NPs. ENMs released into the environment can interact with their surroundings, change characteristics and exhibit toxicity effects distinct from those of pristine ENMs. Furthermore, NPs' large surface areas provide extra-large potential interfaces, thus promoting more significant interactions between NPs and other co-existing species. In such processes, other species can attach to a NP's surface and modify its surface functionality, in addition to the toxicity in normally exhibits. One particular occupational health scenario involves NPs and low-volatile organic compounds (LVOC), a common type of pollutant existing around many potential sources of NPs. LVOC can coat a NP's surface and then dominate its toxicity. One important mechanism in nanotoxicology is the creation of reactive oxygen species (ROS) on a NP's surface; LVOC can modify the production of these ROS. In summary, nanotoxicity research should not be limited to the toxicity of pristine NPs, nor use their toxicity to evaluate the health effects of exposure to environmental NPs. Instead, the interactions which NPs have with other environmental species should also be considered and researched. The potential health effects of exposure to NPs should be derived from these real world NPs with characteristics modified by the environment and their distinct toxicity. Failure to suitably address toxicity results could lead to an inappropriate treatment of nano- release, affect the environment and public health and put a blemish on the development of sustainable nanotechnologies as a whole. The main objective of this thesis is to demonstrate a process for coating NP surfaces with LVOC using a well-controlled laboratory design and, with regard to these NPs' capacity to generate ROS, explore the consequences of changing particle toxicity. The dynamic coating system developed yielded stable and replicable coating performance, simulating an important realistic scenario. Clear changes in the size distribution of airborne NPs were observed using a scanning mobility particle sizer, were confirmed using both liquid nanotracking analyses and transmission electron microscopy (TEM) imaging, and were verified thanks to the LVOC coating. Coating thicknesses corresponded to the amount of coating material used and were controlled using the parameters of the LVOC generator. The capacity of pristine silver NPs (Ag NPs) to generate ROS was reduced when they were given a passive coating of inert paraffin: this coating blocked the reactive zones on the particle surfaces. In contrast, a coating of active reduced-anthraquinone contributed to redox reactions and generated ROS itself, despite the fact that ROS generation due to oxidation by Ag NPs themselves was quenched. Further objectives of this thesis included development of ROS methodology and the analysis of ROS case studies. Since the capacity of NPs to create ROS is an important effect in nanotoxicity, we attempted to refine and standardize the use of 2'7-dichlorodihydrofluorescin (DCFH) as a chemical tailored for the characterization of NPs' capacity for ROS generation. Previous studies had reported a wide variety of results, which were due to a number of insufficiently well controlled factors. We therefore cross-compared chemicals and concentrations, explored ways of dispersing NP samples in liquid solutions, identified sources of contradictions in the literature and investigated ways of reducing artificial results. The most robust results were obtained by sonicating an optimal sample of NPs in a DCFH-HRP solution made of 5,M DCFH and 0.5 unit/ml horseradish peroxidase (HRP). Our findings explained how the major reasons for previously conflicting results were the different experimental approaches used and the potential artifacts appearing when using high sample concentrations. Applying our advanced DCFH protocol with other physicochemical characterizations and biological analyses, we conducted several case studies, characterizing aerosols and NP samples. Exposure to aged brake wear dust engenders a risk of potential deleterious health effects in occupational scenarios. We performed microscopy and elemental analyses, as well as ROS measurements, with acellular and cellular DCFH assays. TEM images revealed samples to be heterogeneous mixtures with few particles in the nano-scale. Metallic and non-metallic elements were identified, primarily iron, carbon and oxygen. Moderate amounts of ROS were detected in the cell-free fluorescent tests; however, exposed cells were not dramatically activated. In addition to their highly aged state due to oxidation, the reason aged brake wear samples caused less oxidative stress than fresh brake wear samples may be because of their larger size and thus smaller relative reactive surface area. Other case studies involving welding fumes and differently charged NPs confirmed the performance of our DCFH assay and found ROS generation linked to varying characteristics, especially the surface functionality of the samples. Les nanomatériaux manufacturés (ENM) présentent des propriétés physico-chimiques particulières et ont donc trouvés des applications dans un nombre croissant de secteurs, permettant de réaliser des produits ayant des propriétés améliorées. Leur utilisation accrue engendre un plus grand risque pour les êtres humains d'être exposés à des nanoparticules (NP) qui sont libérées au long de leur cycle de vie. En conséquence, la nanotoxicologie a émergé et gagné de plus en plus d'attention dû à la nécessité de recueillir les renseignements nécessaires sur l'exposition et les risques associés à ces nouveaux matériaux. Cependant, les études actuelles sur la nanotoxicité ont tendance à se concentrer sur les ENM et utiliser ces résultats toxicologiques pour généraliser l'évaluation des risques sur l'exposition humaine aux NP. Les ENM libérés dans l'environnement peuvent interagir avec l'environnement, changeant leurs caractéristiques, et montrer des effets de toxicité distincts par rapport aux ENM originaux. Par ailleurs, la grande surface des NP fournit une grande interface avec l'extérieur, favorisant les interactions entre les NP et les autres espèces présentes. Dans ce processus, d'autres espèces peuvent s'attacher à la surface des NP et modifier leur fonctionnalité de surface ainsi que leur toxicité. Un scénario d'exposition professionnel particulier implique à la fois des NP et des composés organiques peu volatils (LVOC), un type commun de polluant associé à de nombreuses sources de NP. Les LVOC peuvent se déposer sur la surface des NP et donc dominer la toxicité globale de la particule. Un mécanisme important en nanotoxicologie est la création d'espèces réactives d'oxygène (ROS) sur la surface des particules, et les LVOC peuvent modifier cette production de ROS. En résumé, la recherche en nanotoxicité ne devrait pas être limitée à la toxicité des ENM originaux, ni utiliser leur toxicité pour évaluer les effets sur la santé de l'exposition aux NP de l'environnement; mais les interactions que les NP ont avec d'autres espèces environnementales doivent être envisagées et étudiées. Les effets possibles sur la santé de l'exposition aux NP devraient être dérivés de ces NP aux caractéristiques modifiées et à la toxicité distincte. L'utilisation de résultats de toxicité inappropriés peut conduire à une mauvaise prise en charge de l'exposition aux NP, de détériorer l'environnement et la santé publique et d'entraver le développement durable des industries de la nanotechnologie dans leur ensemble. L'objectif principal de cette thèse est de démontrer le processus de déposition des LVOC sur la surface des NP en utilisant un environnement de laboratoire bien contrôlé et d'explorer les conséquences du changement de toxicité des particules sur leur capacité à générer des ROS. Le système de déposition dynamique développé a abouti à des performances de revêtement stables et reproductibles, en simulant des scénarios réalistes importants. Des changements clairs dans la distribution de taille des NP en suspension ont été observés par spectrométrie de mobilité électrique des particules, confirmé à la fois par la méthode dite liquid nanotracking analysis et par microscopie électronique à transmission (MET), et a été vérifié comme provenant du revêtement par LVOC. La correspondance entre l'épaisseur de revêtement et la quantité de matériau de revêtement disponible a été démontré et a pu être contrôlé par les paramètres du générateur de LVOC. La génération de ROS dû aux NP d'argent (Ag NP) a été diminuée par un revêtement passif de paraffine inerte bloquant les zones réactives à la surface des particules. Au contraire, le revêtement actif d'anthraquinone réduit a contribué aux réactions redox et a généré des ROS, même lorsque la production de ROS par oxydation des Ag NP avec l'oxygène a été désactivé. Les objectifs associés comprennent le développement de la méthodologie et des études de cas spécifique aux ROS. Etant donné que la capacité des NP à générer des ROS contribue grandement à la nanotoxicité, nous avons tenté de définir un standard pour l'utilisation de 27- dichlorodihydrofluorescine (DCFH) adapté pour caractériser la génération de ROS par les NP. Des etudes antérieures ont rapporté une grande variété de résultats différents, ce qui était dû à un contrôle insuffisant des plusieurs facteurs. Nous avons donc comparé les produits chimiques et les concentrations utilisés, exploré les moyens de dispersion des échantillons HP en solution liquide, investigué les sources de conflits identifiées dans les littératures et étudié les moyens de réduire les résultats artificiels. De très bon résultats ont été obtenus par sonication d'une quantité optimale d'échantillons de NP en solution dans du DCFH-HRP, fait de 5 nM de DCFH et de 0,5 unité/ml de Peroxydase de raifort (HRP). Notre étude a démontré que les principales raisons causant les conflits entre les études précédemment conduites dans la littérature étaient dues aux différentes approches expérimentales et à des artefacts potentiels dus à des concentrations élevées de NP dans les échantillons. Utilisant notre protocole DCFH avancé avec d'autres caractérisations physico-chimiques et analyses biologiques, nous avons mené plusieurs études de cas, caractérisant les échantillons d'aérosols et les NP. La vielle poussière de frein en particulier présente un risque élevé d'exposition dans les scénarios professionnels, avec des effets potentiels néfastes sur la santé. Nous avons effectué des analyses d'éléments et de microscopie ainsi que la mesure de ROS avec DCFH cellulaire et acellulaire. Les résultats de MET ont révélé que les échantillons se présentent sous la forme de mélanges de particules hétérogènes, desquels une faible proportion se trouve dans l'échelle nano. Des éléments métalliques et non métalliques ont été identifiés, principalement du fer, du carbone et de l'oxygène. Une quantité modérée de ROS a été détectée dans le test fluorescent acellulaire; cependant les cellules exposées n'ont pas été très fortement activées. La raison pour laquelle les échantillons de vielle poussière de frein causent un stress oxydatif inférieur par rapport à la poussière de frein nouvelle peut-être à cause de leur plus grande taille engendrant une surface réactive proportionnellement plus petite, ainsi que leur état d'oxydation avancé diminuant la réactivité. D'autres études de cas sur les fumées de soudage et sur des NP différemment chargées ont confirmé la performance de notre test DCFH et ont trouvé que la génération de ROS est liée à certaines caractéristiques, notamment la fonctionnalité de surface des échantillons.