984 resultados para optical testing
Resumo:
TiO2 thin films have been deposited on glass and indium tin oxide (ITO) coated glass substrates by sol-gel technique. the influence of annealing temperature on the structural , morphological and optical properties has been examined. X-ray diffraction (XRD) results reveal the amorphous nature of the as-deposited film whereas the annealed films are found to be in the crystalline anatase phase. The surface morphology of the films at different annealing temperatures has been examined by atomic force microscopy (AFM). The in situ surface morphology of the as-deposited and annealed TiO2 films has also been examined by optical polaromicrograph (OPM). TiO2 films infatuated different structural and surface features with variation of annealing temperature. The optical studies on these films suggest their possible usage in sun-shielding applications.
Resumo:
Optically clear glasses of various compositions in the system (100-x)Li2B4O7 center dot x(Ba5Li2Ti2Nb8O30) (5 <= x <= 20, in molar ratio) were fabricated by splat quenching technique. Controlled heat-treatment of the as-quenched glasses at 500 degrees C for 8 h yielded nanocrystallites embedded in the glass matrix. High Resolution Transmission Electron Microscopy (HRTEM) of these samples established the composition of the nano-crystallites to be that of Ba5Li2Ti2Nb8O30. B-11 NMR studies revealed the transformation of BO4 structural units into BO3 units owing to the increase in TiO6 and NbO6 structural units as the composition of Ba5Li2Ti2Nb8O30 increased in the glass. This, in turn, resulted in an increase in the density of the glasses. The influence of the nominal composition of the glasses and glass nanocrystal composites on optical band gap (E-opt), Urbach energy (Delta E), refractive index (n), molar refraction (R-m), optical polarizability (alpha(m)) and third order non-linear optical susceptibility (chi(3)) were studied.
Resumo:
This is the second part of a two part review on the state-of-the-art in holographic optical elements (HOEs). The aspects of fabrication, evaluation, and applications of HOEs, are discussed in this part. It details the direction of future efforts towards finding work-horse type recording media, developing new methods for the evaluation of HOE, and identifying the areas of application where HOEs are to be considered as indispensable components/tools. Finally a summary of all the suggestions for future work made in the two parts is displayed in Table 2 of this part of the review.
Resumo:
A state-of-the-art review on holographic optical elements (HOE) is presented in two parts. In Part I a conceptual overview and an assessment of the current status on the design of HOE have been included. It is pointed out that HOE development based on the use of squeezed light, speckle, non-linear recording, comparative studies between optics and communication approaches, are some of the promising directions for future research in this vital area of photonics.
Resumo:
We propose an effective elastography technique in which an acoustic radiation force is used for remote palpation to generate localized tissue displacements, which are directly correlated to localized variations of tissue stiffness and are measured using a light probe in the same direction of ultrasound propagation. The experimental geometry has provision to input light beam along the ultrasound propagation direction, and hence it can be prealigned to ensure proper interception of the focal region by the light beam. Tissue-mimicking phantoms with homogeneous and isotropic mechanical properties of normal and malignant breast tissue are considered for the study. Each phantom is insonified by a focusing ultrasound transducer (1 MHz). The focal volume of the transducer and the ultrasound radiation force in the region are estimated through solving acoustic wave propagation through medium assuming average acoustic properties. The forward elastography problem is solved for the region of insonification assuming the Lame's parameters and Poisson's ratio, under Dirichlet boundary conditions which gives a distribution of displacement vectors. The direction of displacement, though presented spatial variation, is predominantly towards the ultrasound propagation direction. Using Monte Carlo (MC) simulation we have traced the photons through the phantom and collected the photons arriving at the detector on the boundary of the object in the direction of ultrasound. The intensity correlations are then computed from detected photons. The intensity correlation function computed through MC simulation showed a modulation whose strength is found to be proportional to the amplitude of displacement and inversely related to the storage (elastic) modulus. It is observed that when the storage modulus in the focal region is increased the computed displacement magnitude, as indicated by the depth of modulation in the intensity autocorrelation, decreased and the trend is approximately exponential.
Resumo:
In this paper, we present a wavelet - based approach to solve the non-linear perturbation equation encountered in optical tomography. A particularly suitable data gathering geometry is used to gather a data set consisting of differential changes in intensity owing to the presence of the inhomogeneous regions. With this scheme, the unknown image, the data, as well as the weight matrix are all represented by wavelet expansions, thus yielding the representation of the original non - linear perturbation equation in the wavelet domain. The advantage in use of the non-linear perturbation equation is that there is no need to recompute the derivatives during the entire reconstruction process. Once the derivatives are computed, they are transformed into the wavelet domain. The purpose of going to the wavelet domain, is that, it has an inherent localization and de-noising property. The use of approximation coefficients, without the detail coefficients, is ideally suited for diffuse optical tomographic reconstructions, as the diffusion equation removes most of the high frequency information and the reconstruction appears low-pass filtered. We demonstrate through numerical simulations, that through solving merely the approximation coefficients one can reconstruct an image which has the same information content as the reconstruction from a non-waveletized procedure. In addition we demonstrate a better noise tolerance and much reduced computation time for reconstructions from this approach.
Resumo:
Reconstructions in optical tomography involve obtaining the images of absorption and reduced scattering coefficients. The integrated intensity data has greater sensitivity to absorption coefficient variations than scattering coefficient. However, the sensitivity of intensity data to scattering coefficient is not zero. We considered an object with two inhomogeneities (one in absorption and the other in scattering coefficient). The standard iterative reconstruction techniques produced results, which were plagued by cross talk, i.e., the absorption coefficient reconstruction has a false positive corresponding to the location of scattering inhomogeneity, and vice-versa. We present a method to remove cross talk in the reconstruction, by generating a weight matrix and weighting the update vector during the iteration. The weight matrix is created by the following method: we first perform a simple backprojection of the difference between the experimental and corresponding homogeneous intensity data. The built up image has greater weightage towards absorption inhomogeneity than the scattering inhomogeneity and its appropriate inverse is weighted towards the scattering inhomogeneity. These two weight matrices are used as multiplication factors in the update vectors, normalized backprojected image of difference intensity for absorption inhomogeneity and the inverse of the above for the scattering inhomogeneity, during the image reconstruction procedure. We demonstrate through numerical simulations, that cross-talk is fully eliminated through this modified reconstruction procedure.
Resumo:
During the course of genome studies in a rural community in the South Indian state of Karnataka, DNA-based investigations and counselling for familial adenomatous polyposis (FAP) were requested via the community physician. The proposita died in 1940 and FAP had been clinically diagnosed in 2 of her 5 children, both deceased. DNA samples from 2 affected individuals in the third generation were screened for mutations in the APC gene, and a frame-shift mutation was identified in exon 15 with a common deletion at codon 1061. Predictive testing for the mutation was then organized on a voluntary basis. There were 11 positive tests, including confirmatory positives on 2 persons diagnosed by colonoscopy, and to date surgery has been successfully undertaken on 3 previously undiagnosed adults. The ongoing success of the study indicates that, with appropriate access to the facilities offered by collaborating centres, predictive testing is feasible for diseases such as FAP and could be of significant benefit to communities in economically less developed countries.
Resumo:
A relationship between 2-monotonicity and 2-asummability has been established and thereby a fast method for testing 2-asummability of switching functions derived. The approach is based on the fact that only a particular type of 2-sums need be examined for 2-asummability testing of 2-monotonic switching functions. These 2-sums are those which contain more than five 1's. 2-asummability testing for these 2-sums can be easily done by using the authors' technique.
Resumo:
This article presents the optical absorption and emission properties of Pr3+ and Nd3+ doped two different mixed alkali chloroborate glass matrices of the type 70B(2)O(3)center dot xLiCl center dot(30 - x)NaCl and 70B(2)O(3)center dot xLiCl center dot(30 - x)KCl (x = 5, 10, 15.20 and 25). The variation of Judd-Ofelt parameters (Omega(2), Omega(4) and Omega(6)), total radiative transition probabilities (A(T)), radiative lifetimes (tau(R)) and emission cross-sections (sigma(p)) with the variation of alkali contents in the glass matrix have been discussed in detail. The changes in the peak wavelengths of the hypersensitive transition and intensity parameters with x are correlated to the structural changes in the host matrix. The estimated radiative lifetimes of certain excited states of Pr3+ and Nd3+ in these two glass matrices are reported. Peak stimulated emission cross-sections (sigma(p)) are reported for the observed emission transitions of Pr3+ and Nd3+ ions. Branching ratios (beta) of the observed emission transitions obtained from the Judd-Ofelt theory are compared with the values obtained from the emission spectra. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The photoacoustic technique is used to determine the optical energy gap E0 of bulk SixTe100−x glasses in the glass-forming region 10 ≤ x ≤ 28. The thermal diffusivity α of these samples has also been measured. The variation of E0 and α with x is reported. It is found that E0 increases with x nearly linearly with a sharp decrease in the rate of increase beyond x = 20. The thermal diffusivity also increases with x up to x = 20 but decreases for compositions with higher values of x. The observed behaviour is explained on the basis of a chemical bond approach. It is accounted for in terms of the increase in the number of Te---Te bonds and formation of SiTe4 tetrahedra with an increase in the chalcogen content.
Resumo:
The study of non-invasive characterization of elastic properties of soft biological tissues has been a focus of active researches since recent years. Light is highly scattered by biological tissues and hence, sophisticated reconstruction algorithms are required to achieve good imaging depth and a reasonable resolution. Ultrasound (US), on the otherhand, is less scattered by soft tissues and it has been in use for imaging in biomedical ultrasound systems. Combination of the contrast sensitivity of light and good localization of ultrasound provides a challenging technique for characterization of thicker tissues deep inside the body non-invasively. The elasticity of the tissues is characterized by studying the response of tissues to mechanical excitation induced by an acoustic radiation force (remotely) using an optical laser. The US modulated optical signals which traverse the tissue are detected by using a CCD camera as detector array and the pixel map formed on the CCD is used to characterize the embedded inhomogeneities. The use of CCD camera improves the signal-noise-ratio (SNR) by averaging the signals from all of the CCD pixels.
Resumo:
Silicon dioxide films are extensively used as protective, barrier and also low index films in multilayer optical devices. In this paper, the optical properties of electron beam evaporated SiO2 films, including absorption in the UV, visible and IR regions, are reported as a function of substrate temperature and post-deposition heat treatment. A comparative study of the optical properties of SiO2 films deposited in neutral and ionized oxygen is also made.
Resumo:
Making use of aerosol optical depths (AOD) derived from MODIS (onboard TERRA satellite) and winds from NCEP, and the fact that sea-salt optical depth over ocean is determined primarily by sea-surface wind speed, we examine the contribution of sea-salt to the composite aerosol optical depth ( AOD) over Arabian Sea ( AS), by developing empirical models for characterizing wind-speed dependence of sea-salt optical depth. We show that at high wind speeds, sea-salt contributes 81% to the coarse mode and 42% to the composite AOD in the southern AS. In contrast to this, over the northern AS, share of sea-salt to coarse mode and composite optical depth is only 35% and 16% respectively. Comparison of the sea-salt optical depth and coarse mode optical depth ( MODIS) showed excellent agreement. The sea-salt optical depth over AS at moderate to high wind speed is comparable to the anthropogenic AOD reported for this region during winter.