941 resultados para non-linear loads


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowledge of drag force is an important design parameter in aerodynamics. Measurement of aerodynamic forces at hypersonic speed is a challenge and usually ground test facilities like shock tunnels are used to carry out such tests. Accelerometer based force balances are commonly employed for measuring aerodynamic drag around bodies in hypersonic shock tunnels. In this study, we present an analysis of the effect of model material on the performance of an accelerometer balance used for measurement of drag in impulse facilities. From the experimental studies performed on models constructed out of Bakelite HYLEM and Aluminum, it is clear that the rigid body assumption does not hold good during the short testing duration available in shock tunnels. This is notwithstanding the fact that the rubber bush used for supporting the model allows unconstrained motion of the model during the short testing time available in the shock tunnel. The vibrations induced in the model on impact loading in the shock tunnel are damped out in metallic model, resulting in a smooth acceleration signal, while the signal become noisy and non-linear when we use non-isotropic materials like Bakelite HYLEM. This also implies that careful analysis and proper data reduction methodologies are necessary for measuring aerodynamic drag for non-metallic models in shock tunnels. The results from the drag measurements carried out using a 60 degrees half angle blunt cone is given in the present analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper a method of solving certain third-order non-linear systems by using themethod of ultraspherical polynomial approximation is proposed. By using the method of variation of parameters the third-order equation is reduced to three partial differential equations. Instead of being averaged over a cycle, the non-linear functions are expanded in ultraspherical polynomials and with only the constant term retained, the equations are solved. The results of the procedure are compared with the numerical solutions obtained on a digital computer. A degenerate third-order system is also considered and results obtained for the above system are compared with numerical results obtained on the digital computer. There is good agreement between the results obtained by the proposed method and the numerical solution obtained on digital computer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An analytical study for the static strength of adhesive lap joints is presented. The earlier solutions of Volkersen [i], DeBruyne[2] and others were limited to linear adhesives. The influence of adhesive non-linearity was first considered by Grimes' et al[3] and Dickson et al [4]. Recently Hart-Smith[5] successfully introduced elastic-plastic behaviour of the adhesive. In the present study the problem is formulated for general non-linear adhesive behaviour and an efficient numerical algorithm is written for the solution. Bilinear and trilinear models for the nonlinearity yield closed form analytical solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT (R) package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tuberefrigerator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The nonlinear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0 < t* < 1 and reach the steady-state values for t* >= 4. (C) 2010 Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed Using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interlace. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable Of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely Using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. I-lie capability of the model to capture the critical crack regions, loads and deflections for various types Of shear failures ill prestressed concrete beam has been illustrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Composites are finding increasing application in many advanced engineering fields like aerospace, marine engineering, hightech sports equipment, etc., due to their high specific strength and/or specific stiffness values. The use of composite components in complex situations like airplane wing root or locations of concentrated load transfer is limited due to the lack of complete understanding of their behaviour in the region of joints. Joints are unavoidable in the design and manufacture of complex structures. Pin joints are one of the most commonly used methods of connection. In regions of high stresses like airplane wing root joints interference fit pins are used to increase its fatigue life and thereby increase the reliability of the whole structure. The present contribution is a study on the behaviour of the interference fit pin in a composite plate subjected to both pull and push type of loads. The interference fit pin exhibits partial contact/separation under the loads and the contact region is a non-linear function of the load magnitude. This non-linear behaviour is studied by adopting the inverse technique and some new results are presented in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transfer function coefficients (TFC) are widely used to test linear analog circuits for parametric and catastrophic faults. This paper presents closed form expressions for an upper bound on the defect level (DL) and a lower bound on fault coverage (FC) achievable in TFC based test method. The computed bounds have been tested and validated on several benchmark circuits. Further, application of these bounds to scalable RC ladder networks reveal a number of interesting characteristics. The approach adopted here is general and can be extended to find bounds of DL and FC of other parametric test methods for linear and non-linear circuits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the problem of scheduling semiconductor burn-in operations, where burn-in ovens are modelled as batch processing machines. Most of the studies assume that ready times and due dates of jobs are agreeable (i.e., ri < rj implies di ≤ dj). In many real world applications, the agreeable property assumption does not hold. Therefore, in this paper, scheduling of a single burn-in oven with non-agreeable release times and due dates along with non-identical job sizes as well as non-identical processing of time problem is formulated as a Non-Linear (0-1) Integer Programming optimisation problem. The objective measure of the problem is minimising the maximum completion time (makespan) of all jobs. Due to computational intractability, we have proposed four variants of a two-phase greedy heuristic algorithm. Computational experiments indicate that two out of four proposed algorithms have excellent average performance and also capable of solving any large-scale real life problems with a relatively low computational effort on a Pentium IV computer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fatigue de-bond growth studies have been conducted on adhesively bonded lap joint specimens between aluminium and aluminium with Redux-319A adhesive with a pre-defined crack of 3 mm at the bond end. The correlations between fracture parameters and the de-bond growth data are established using both numerical and experimental techniques. In the numerical method, geometrically non-linear finite element analyses were carried out on adhesively bonded joint specimen for various de-bond lengths measured from the lap end along the mid-bond line of the adhesive. The finite element results were post processed to estimate the SERR components G (I) and G (II) using the Modified Virtual Crack Closure Integral (MVCCI) procedure. In experimental work, specimens were fabricated and fatigue de-bond growth tests were conducted at a stress ratio R = -1. The results obtained from both numerical analyses and testing have been used to generate de-bond growth curve and establish de-bond growth law in the Paris regime for such joints. The de-bond growth rate is primarily function of mode-I SERR component G (I) since the rate of growth in shear mode is relatively small. The value of Paris exponent m is found to be 6.55. The high value of de-bond growth exponent in Paris regime is expected, since the adhesive is less ductile than conventional metallic materials. This study is important for estimating the life of adhesively bonded joints under both constant and variable amplitude fatigue loads.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with the evaluation of the component-laminate load-carrying capacity, i.e., to calculate the loads that cause the failure of the individual layers and the component-laminate as a whole in four-bar mechanism. The component-laminate load-carrying capacity is evaluated using the Tsai-Wu-Hahn failure criterion for various lay-ups. The reserve factor of each ply in the component-laminate is calculated by using the maximum resultant force and the maximum resultant moment occurring at different time steps at the joints of the mechanism. Here, all component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (strip-like beam). Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the non-linear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the non-linear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict more quickly and accurately than would otherwise be possible. Local 3-D stress, strain and displacement fields for representative sections in the component-bars are recovered, based on the stress resultants from the 1-D global beam analysis. A numerical example is presented which illustrates the failure of each component-laminate and the mechanism as a whole.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epoch is defined as the instant of significant excitation within a pitch period of voiced speech. Epoch extraction continues to attract the interest of researchers because of its significance in speech analysis. Existing high performance epoch extraction algorithms require either dynamic programming techniques or a priori information of the average pitch period. An algorithm without such requirements is proposed based on integrated linear prediction residual (ILPR) which resembles the voice source signal. Half wave rectified and negated ILPR (or Hilbert transform of ILPR) is used as the pre-processed signal. A new non-linear temporal measure named the plosion index (PI) has been proposed for detecting `transients' in speech signal. An extension of PI, called the dynamic plosion index (DPI) is applied on pre-processed signal to estimate the epochs. The proposed DPI algorithm is validated using six large databases which provide simultaneous EGG recordings. Creaky and singing voice samples are also analyzed. The algorithm has been tested for its robustness in the presence of additive white and babble noise and on simulated telephone quality speech. The performance of the DPI algorithm is found to be comparable or better than five state-of-the-art techniques for the experiments considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Delamination is one of the most commonly occurring defects in laminated composite structures. Under operating fatigue loads on the laminate this delamination could grow and totally delaminate certain number of layers from the base laminate. This will result in loss of both compressive residual strength and buckling margins available. In this paper, geometrically non-linear analysis and evaluation of Strain Energy Release Rates using MVCCI technique is presented. The problems of multiple delamination, effect of temperature exposure and delamination from pin loaded holes are addressed. Numerical results are presented to draw certain inferences of importance to design of high technology composite structures such as aircraft wing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper guidance laws to intercept stationary and constant velocity targets at a desired impact angle, based on sliding mode control theory, are proposed. The desired impact angle, which is defined in terms of a desired line-of-sight (LOS) angle, is achieved in finite time by selecting the missile's lateral acceleration (latax) to enforce non-singular terminal sliding mode on a switching surface designed using this desired LOS angle and based on non-linear engagement dynamics. Numerical simulation results are presented to validate the proposed guidance laws for different initial engagement geometries and impact angles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grid simulators are used to test the control performance of grid-connected inverters under a wide range of grid disturbance conditions. In the present work, a three phase back-to-back connected inverter sharing a common dc bus has been programmed as a grid simulator. Three phase balanced disturbance voltages applied to three-phase balanced loads has been considered in the present work. The developed grid simulator can generate three phase balanced voltage sags, voltage swells, frequency deviations and phase jumps. The grid simulator uses a novel disturbance generation algorithm. The algorithm allows the user to reference the disturbance to any of the three phases at any desired phase angle. Further, the exit of the disturbance condition can be referenced to the desired phase angle of any phase by adjusting the duration of the disturbance. The grid simulator hardware has been tested with different loads – a linear purely resistive load, a non-linear diode-bridge load and a grid-connected inverter load.