974 resultados para nickel, cobalt and copper determination
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Microwave-assisted acid decomposition, direct dilution in kerosene, and oil-in-water emulsion were evaluated as lubricating oil pretreatment procedures for Cu, Cr, Fe, Ni, Pb, Sb, and Zn determination by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS). For wet digestion, results were compared with those obtained by Flame Atomic Absorption Spectrometry (FAAS). The ultrasound probe used in emulsions sonication contaminated samples with Cr, although better results have been observed for the other six elements in this condition. In general, recovery percentages ranging from 81-106%(Cu), 80-107%(Cr), 85-114%(Fe), 82-116%(Ni), 86-117%(Pb), 85-115%(Sb), and 81-114%(Zn) were obtained. The HR-CS FAAS showed to be faster and more sensitive than FAAS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for Cd and Pb determination in whole blood. The comparison of thermochemical and physicochemical parameters allowed the selection of Ag, Bi, and Tl as internal standard candidates. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte ( axis x), precision and accuracy were used to select Ag as the most appropriate internal standard. Blood samples were diluted (1 + 9) with 0.11% (m/v) Triton X-100 + 1.1% (v/v) HNO3 + 0.28% (m/v) NH4H2PO4 + 10 mug L-1 Ag+. Pyrolysis and atomization temperatures for the optimized heating program were 550 and 1700 degreesC, respectively. Characteristic masses based on integrated absorbance were 1.68 +/- 0.01 pg for Cd and 30.3 +/- 0.1 pg for Pb. The detection limits (DL) were 0.095 +/- 0.001 mug L-1 and 0.86 +/- 0.01 mug L-1 for Cd and Pb, respectively. The mean RSD for all determinations was the same for Cd (13 +/- 9%) with or without Ag as internal standard ( IS). on the other hand, the use of Ag as IS improved the RSD for Pb from 3.6 +/- 4.0% to 2.2 +/- 2.0%. An effective contribution of the internal standard Ag was verified in the recoveries of spiked samples (0.5 mug L-1 Cd2+ and 5.0 mug L-1 Pb2+). The mean recoveries were 81 +/- 8% and 91 +/- 4% for Cd, and 80 +/- 11% and 93 +/- 6% for Pb without and with IS correction, respectively. This is the first application of IS for a simultaneous determination by SIMAAS.
Resumo:
Multilayered nanostructured films have been widely investigated for electrochemical applications as modified electrodes, including the layer-by-layer (LbL) films where properties such as thickness and film architecture can be controlled at the molecular level. In this study, we investigate the electrochemical features of LbL films of poly (o-methoxyaniline; POMA) and tetrasulfonated phthalocyanines containing nickel (NiTsPc) or copper (CuTsPc). The films displayed well-defined electroactivity, with redox pairs at 156 and 347 mV vs SCE, characteristic of POMA, which allowed their use as modified electrodes for detecting dopamine and ascorbic acid at concentrations as low as 10(-5) M.
Resumo:
A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect back- ground correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier, With 5 mug Pd + 3 mug Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400degreesC and 2100degreesC, respectively, and 20 muL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 - 50.0 mug L-1 for As, Sb, Se; 10.0 - 100 mug L-1 for Cu; and 20.0 - 200 mug L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 mug L-1 As, 0.2 mug L-1 Cu, 0.6 mug L-1 Mn, 0.3 mug L-1 Sb, 0.9 mug L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 mug L-1, 1000 mug L-1, 2000 mug L-1, 5 mug L-1, and 50 mug L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mu Sb and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.
Resumo:
A method has been developed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by graphite furnace atomic absorption spectrometry (GFAAS) using a transversely heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages using the mixture Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3, and diluted ethanol (1 + 1, v/v) containing different nitric acid concentrations. With 5 rhog Pd + 3 mug Mg as the modifiers, pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1200 C and 2200degreesC respectively. For 20 muL of diluted sample (10 muL ethanol + 10 muL of 0.28 mol L-1 HNO3) dispensed into the graphite tube, analytical curves in the 2.0 - 50 mug L-1 Al, As, Cu, Fe, Mn, Ni ranges were established. The calculated characteristic masses were - 37 pg Al, 73 pg As, 31 pg Cu, 16 pg Fe, 9 pg Mn, and 44 pg Ni, and the lifetime of the tube was around 2 50 firings. The limits of detection (LOD) based on integrated absorbance were 1.2 mug L-1 Al, 2.5 mug L-1 As. 0.22 mug L-1 Cu, 1.6 L-1 Fe 0.20 mug L-1 Mn 1.1 mug L-1 Ni. The relatively standard deviations (n = 12) were less than or equal to 3%, less than or equal to 6%, less than or equal to 2%, less than or equal to 3.4%, less than or equal to 1.3%, and less than or equal to 2% for Al, As, Cu, Fe, Mn, and Ni, respectively, the recoveries of Al, As, Cu, Fe, Mn and Ni added to fuel ethanol samples varied from 77% to 112%, 92% to 114%, 104% to 113%, 73% to 116%, 91% to 122% and 93% to 116%, respectively. Accuracy was checked for Al, As, Cu, Fe, Mn, and Ni determination in 20 samples purchased at local gas stations in Araraquara city, Brazil. A paired t-test showed that the results were in agreement at the 95% confidence level with those obtained by single-element GFAAS.
Resumo:
The effect of Cu2+ contents and of firing temperature on sintering and crystallite growth of nanocrystalline SnO2 xerogels was analyzed by thermoanalysis (mass loss (TG), linear shrinkage, and differential thermal analysis (DTA)), X-ray powder diffraction (XRPD), and EXAFS (extended X-ray absorption fine structures) measurements. Samples were prepared by two methods: (a) coprecipitation of a colloidal suspension from aqueous solution containing both Sn(IV) and Cu(II) ions and (b) grafting copper(II) species on the surface of tin pride gel. The thermoanalysis has shown that the shrinkage associated with the mass loss decreases by increasing the amount of copper. The EXAFS measurements carried out at the Cu K edge have evidenced the presence of copper in substitutional solid solution for the dried xerogel prepared with 0.7 mol % of copper, while for higher concentration of doping, copper has been observed also at the external surface of crystallites. The solid solution is metastable and copper migrates toward the surface during firing. The XRPD and DTA results have shown a recrystallization process near 320 degrees C, which leads to crystallite growth. The presence of copper segregated near the crystallite surface controls its growth.
Resumo:
A method is proposed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by electrothermal atomic absorption spectrometry (ETAAS) using W-Rh permanent modifier together with Pd(NO3)(2) + Mg(NO3)(2) conventional modifier. The integrated platform of a transversely heated graphite atomizer (THGA) was treated with tungsten, followed by rhodium, forming a deposit containing 250 mug W + 200 mug Rh. A 500-muL, volume of fuel ethanol was diluted with 500 muL, of 0.14 mol L-1 HNO3 in an autosampler cup of the spectrometer. Then, 20 muL, of the diluted ethanol was introduced into the pretreated graphite platform followed by the introduction of 5 mug Pd(NO3)(2) + 3 mug Mg(NO3)(2). The injection of this modifier was required to improve arsenic and iron recoveries in fuel ethanol. Calibrations were carried out using multi-element reference solutions prepared in diluted ethanol (1 + 1, v/v) acidified to 0. 14 mol L-1 HNO3. The pyrolysis and atomization temperatures of the heating program were 1200degreesC and 2200degreesC, respectively, which were obtained with multielement reference solutions in acidic diluted ethanol (1 + 1, v/v; 0. 14 mol L-1 HNO3). The characteristic masses for the simultaneous determination in ethanol fuel were 78 pg Al, 33 pg As, 10 pg Cu, 14 pg Fe, 7 pg Mn, and 24 pg Ni. The lifetime of the pretreated tube was about 700 firings. The detection limits (D.L.) were 1.9 mug L-1 Al, 2.9 mug L-1 As, 0.57 mug L-1.Cu, 1.3 mug L-1 Fe, 0.40 mug L-1 Mn, and 1.3 mug L-1 Ni. The relative standard deviations (n = 12) were 4%, 4%, 3%, 1.5%, 1.2%, and 2.2% for Al, As, Cu, Fe, Mn, and Ni, respectively. The recoveries of Al, As, Cu, Fe, Mn, and Ni added to the fuel ethanol samples varied from 81% to 95%, 80% to 98%, 97% to 109%, 85% to 107%, 98% to 106% and 97% to 103%, respectively. Accuracy was checked for the Al, As, Cu, Fe, Mn, and Ni determination in 10 samples purchased at a local gas station in Araraquara-SP City, Brazil. A paired t-test showed that at the 95% confidence level the results were in agreement with those obtained by single-element ETAAS.
Resumo:
Chitin hydrogels of poly(vinylpyrrolidone) (VP) were prepared by means of the hydrogen peroxide graft copolymerization process. The effect of the VP grafted chain on water diffusion through the biopolymer was studied. Fourier transform infrared spectra of the VP-g-Ch showed an increase in the intensities of the hydroxyl and carbonyl stretching bands indicating a reduction in the hydrogen bonding of chitin. An investigation was undertaken regarding the adsorption of nickel(II) and cadmium(II) ions from aqueous solutions by the VP grafted chitin and the effects of the grafting degree on the Cd2+ and Ni2+ sorption were studied. The Cd2+ and Ni2+ adsorption equilibrium data correlate well with the Freundlich equation. The results indicate that the Ch-g-VP graft copolymer under investigation is a potentially powerful chelating material that can be employed for Ni2+ and Cd2+ ion removal from wastewater effluents. (C) 2004 Wiley Periodicals, Inc.
Resumo:
A comparative study is reported between C-18 bonded silica gel and powdered polyethylene (PE) as sorbent for Cd, Cu, and Pb determination using ammonium diethyldithiophosphate (ADTP) as the complexing agent in a flow injection system. The complexes were formed in 0.14 mol L-1 HNO3 and processed in a simple flow system comprising a peristaltic pump, a manual injector-commutator, and a sorbent-packed minicolumn. Ethanol was selected as the eluent and analytes in the eluate were determined by flame atomic absorption spectrometry. The optimum concentration of the complexing agent was 0.1% (m/v) ADTP for Cu and Pb determination using either C-18 or PE, and 0.25% (m/v) ADTP for Cd determination using PE. The sample loading flow rates were 5.0, 3.6, and 3.0 mL min(-1) for Cu, Pb, and Cd, respectively. The best elution flow rate was 6.5 mL min(-1). For a 60-sec preconcentration time, the sampling rate was 40 h(-1) and the enrichment factors of 33, 36, and 11 times (C-18) or 18, 22, and 23 times (PE) were obtained for Cu, Pb, and Cd, respectively. The limits of detection (LOD) were 1.6 mug L-1 Cu, 11 mug L-1 Pb, and 2.0 mug L-1 Cd using C-18 or 2.9 mug L-1 Cu, 19 mug L-1 Pb, and 1.0 mug L-1 Cd using PE, respectively. The relative standard deviations (n = 12) were typically <2%, <2%, and <6% for Cd, Cu, and Pb, respectively. The recoveries of Cd, Cu, and Pb added to wine samples varied from 96-99%, 97-102%, and 90-99%, respectively, using C-18 or PE. Accuracy was checked for Cd, Cu, and Pb determination in six wine samples digested by block digestor and open-vessel microwave-assisted digestion systems. The results revealed that C-18 was more efficient for Cu and Pb determination, while PE was the best sorbent for Cd.
Resumo:
A new method was developed for the simultaneous determination of As, Bi, Sb, and Se by flow injection hydride generation graphite furnace atomic absorption spectrometry. An alternative two-step sample treatment procedure was used. The sample was heated (80degreesC) for 10 min in 6 M HCl to reduce Se(VI) to Se(IV), followed by the addition of 1% (m/v) thiourea solution to reduce arsenic and antimony from the pentavalent to the trivalent states.With this procedure, all analytes were converted to their most favorable and sensitive oxidation states to generate the corresponding hydrides. The pre-treated sample solution was then processed in the flow system for in situ trapping and atomization in a graphite tube coated with iridium. The impermanent modifier remained stable up to 300 firings and new coating out significant were possible wit changes in the analytical performance.The accuracy was checked for As, Bi, Sb, and Se determination in water standard reference materials NIST 1640 and 1643d and the results were in agreement with the certified values at a 95% confidence level. Good recoveries (94-104%.) of spiked mineral waters and synthetic As(V), Sb(Ill), mixtures of As(Ill), Sb(V), Se(VI), and Se(IV) were also found. Calculated characteristic masses were 32 mug As, 79 mug Bi, 35 mug Sb, and 130 pg Se, and the corresponding limits of detection were 0.06, 0.16, 0.19, and 0.59 mug L-1, respectively. The repeatability for a typical solution containing 5 mug L-1 As, Bi, Sb, and Se was in the 1-3% range.
Resumo:
The feasibility of using internal standardization (IS) to correct for interferences in hydride generation with in situ trapping in graphite furnace was evaluated. Arsenic was chosen as internal standard for Sb determination and Ir was used as permanent modifier. Fluctuations in the main parameters that affect the analytical results were minimized by IS and an effective contribution was verified in the studies of liquid phase interferences. Cobalt and Ni2+ were selected to illustrate the potential use of IS on the correction of interference by transition metals. The application of IS allows the Sb determination in samples containing up to 20-fold higher concentration of the Co2+ and Ni2+ when compared to the procedure without IS. The relative standard deviation of measurements varied from 0.3% to 0.7% and from 1.1% to 3.2% with and without IS, respectively. Recoveries within 92% and 107% of spiked aqueous solution containing Sb(III) and Sb(V) were found. (c) 2005 Elsevier B.V. All rights reserved.