887 resultados para nanoparticelle magnesio idrogeno IGC SEM XRD Sievert titanio idruro
Resumo:
TiO2 nanotubes were synthesized by hydrothermal method and doped with three nitrogen compounds to enhance photocatalytic activity under visible light. Catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and specific surface area and pore volume determined by BET and BJH methods, respectively. Photocatalytic activity was evaluated by photodegradation of rhodamine B under visible and UV radiations. Results showed doped-nanotubes were more efficient under visible light. The best photocatalytic activity was for sample NTT-7-600/NH3I, being 30% higher than the non-doped sample.
Resumo:
The mineral waste studied was host rock from a chromite mine located in Andorinha/Bahia, extracted and stockpiled in yards without specific application. Host rock was submitted to chemical analysis, XRD, SEM-EDS, IR and TGA and classified according to ABNT standards for solid waste classification. Analyses confirmed that this host rock, classified as ultrabasic, consists mainly of dolomite, calcite and diopside. Hazard assessment results showed this host rock should be classified as class II B - inert waste, important for its potential application in agriculture as a soil acidity correction agent.
Resumo:
Titanium dioxide porous thin films on the Anatase phase were deposited onto glass slides by the sol-gel method assisted with polyethylene glycol (PEG). The dip-coated films were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA and DTG), UV-visible spectroscopy and X-ray diffraction (XRD). The photocatalytic activity of the films was determined by means of methyl-orange oxidation tests. The resultant PEG-modified films were crack-free and developed a porous structure after calcination at 500 °C. Photo-oxidation tests showed the dependency of catalytic activity of the films on the number of layers (thickness) and porosity, i.e. of the interfacial area.
Resumo:
Trace element concentrations were measured in atmospheric particulate matter collected in 2009 and 2010, in a Brazilian region influenced by pre-harvest burning of sugar cane crops. For coarse particles, high concentrations of Al, Fe, K and Ca suggested that re-suspended soil dust was the main source of aerosol trace elements, subsequently confirmed by XRD analysis. High levels of K, Zn, As, Cd and Pb were found in fine particles, confirming the contribution of biomass burning and vehicle emissions, whereas Na, Al, K, Fe and Zn were the representative elements in ultrafine particles, influenced by a diversity of sources.
Resumo:
In the present work, beta zeolites were prepared by an alternative route called steam-assisted conversion (SAC). Several zeolites were synthesized using amorphous dry gels with a low SDA concentration (0.09 mol, TEAOH). Temperature and crystallization time were the main parameters studied. X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM) were the characterization techniques employed. The zeolites prepared showed mixed phases such as beta, MTW and ZSM-5 while only one sample treated at 150ºC with 24 h of crystallization time showed a pure ZSM-5 phase (SAC-5). These preliminary results serve as a starting point for optimizing the synthesis of a specific type of zeolite using the SAC method.
Resumo:
Fresh water sponge was used as a silica source for the synthesis of MCM-41 via the hydrothermal process. The silica was extracted from the sponge by washing with nitric acid and piranha solution. Synthesis of MCM-41 was performed at 100 °C for 5 days and the procedure was optimized, with modifications made to the leaching temperature of the silica and the synthesis of mesoporous material, which was characterized by XRD, FT-IR, SEM and adsorption of N2. The optimal result was achieved at a temperature of 135 °C for 3 days, showing ordered mesoporous material with a surface area of 1080 m² g-1.
Resumo:
Polystyrene/layered hydroxide salt (LHS) modified with sodium dodecyl sulfate was synthesized by in situ polymerization. The materials synthesized were characterized by gravimetry, X-ray diffraction (XRD), thermogravimetry analyses (TGA), differential scanning calorimetry (DSC) and the flammability test (FT). XRD demonstrated that synthesized nanocomposites in all compositions studied showed poor global dispersion of LHS in polystyrene. TGA showed a slight decrease in thermal stability. DSC curves showed that the glass transition temperature of polystyrene and nanocomposites were similar. The FT showed that the nanocomposite with low load of LHS exhibited good results.
Resumo:
In this study, the influence of mechanical activation by intensive ball milling of a stoichiometric mixture of talc, kaolin, and alumina on the mechanism and kinetics of cordierite (2MgO·2Al2O3·5SiO2) formation was evaluated. The raw materials were characterized by chemical analysis, X-ray diffraction (XRD), laser diffraction, and helium pycnometry. The kinetics and mechanism of cordierite formation were studied by XRD, differential thermal analysis, and dilatometry in order to describe the phase formation as a function of temperature (1000-1400 ºC), time of thermochemical treatment (0-4 h), and grinding time of the mixture (0-45 min). Finally, the optimal conditions of the thermochemical treatment that ensured the formation of cordierite were determined: milling time of 45 min and thermal treatment at 1280 ºC for 1 h.
Resumo:
Cobalt or iron oxides supported or not on zeolite Hbeta were prepared and evaluated in the reduction reaction of NO by CO in presence of O2, SO2 or H2O. XRD results evidenced the Hbeta structure and the formation of Co3O4 and Fe2O3. TPR-H2 analysis showed complete reduction of cobalt oxide at lower temperatures than for iron oxide. The catalysts are quite active and the activity depends on the reaction temperature. The highest conversions rates were observed for pure iron oxide, which can be a relatively low cost catalyst for reduction of NO by CO, with high selectivity towards the N2 formation.
Resumo:
Microporous molecular sieves of type Y, Beta, ZSM-5, ZSM-12 and ZSM-35, and mesoporous molecular sieves of type MCM-41 and MCM-48, and these sieves modified with triethanolamine and ethylenediamine were obtained and characterized by XRD, FTIR, TGA and nitrogen adsorption. The adsorption tests were performed by the gravimetric method under a stream of CO2 at ambient temperature and pressure. The adsorbents studied showed maximum adsorption capacity of carbon dioxide in the range of 13.1 to 85.5 mg of CO2 per gram of adsorbent.
Resumo:
Elephant grass ash (EGA) was produced at 700 °C, with two different treatments: hot water (EGAhw) or acid solution (EGAas). The efficiency of the treatments at removing the potassium oxide was evaluated with the aim of using the EGA as a pozzolanic mineral addition for cement-based composites. Characterizations were carried out by X-ray fluorescence (XRF), X-ray diffraction (XRD), pozzolanic activity by electric conductivity and application of the kinetic-diffusive model. The analysis evidenced that the chemical treatment was more efficient for removing potassium oxide. The pozzolanic activity test and the kinetic parameters for the EGAas indicated that this ash is suitable for cement-based composites.
Resumo:
In this manuscript, a BiVO4 semiconductor was synthesized by solution combustion synthesis using different fuels (Alanine, Glycine and Urea). Also, the Tween® 80 surfactant was added during synthesis. BiVO4 was characterized by XRD, SEM and diffuse reflectance spectroscopy. Photocatalytic activity was evaluated by the discoloration of methylene blue at 664 nm under UV-visible light irradiation. According to XRD, the monoclinic phase of BiVO4 was obtained for the samples. The smallest particle size and highest k obs value were observed for the BiVO4/alanine sample, which promoted greater demethylation of methylene blue.
Resumo:
Commercial and synthetic mesoporous aluminas impregnated with potassium carbonate were characterized by X-ray diffraction (XRD), nitrogen physisorption, infrared spectroscopy and 27Al MAS NMR. The activities in the transesterification reaction of sunflower oil with methanol for biodiesel production were evaluated. 27Al MAS NMR spectra evidenced the presence of AlIV and AlVI in the samples, and also of AlV sites in the mesoporous synthesized alumina, which disappeared after impregnation with potassium salt followed by calcination. All aluminas containing potassium were active for biodiesel production from sunflower seed oil, with high conversions by both conventional heating and microwave irradiation.
Resumo:
A novel superabsorbent hydrogel (SH) composite based on a poly(acrylamide-co-acrylate) matrix filled with nontronite (NONT), a Fe(III)-rich member of the smectite group of clay minerals, is described in this manuscript. A variety of techniques, including FTIR, XRD, TGA, and SEM/EDX, were utilized to characterize this original composite. Experimental data confirmed the SH composite formation and suggested NONT was completely dispersed in the polymeric matrix. Additionally, NONT improved the water uptake capacity of the final material, which exhibited fast absorption, low sensitivity to the presence of salt, high water retention and a pH sensitive properties. These preliminary data showed that the original SH composite prepared here possesses highly attractive properties for applications in areas such as the agriculture field, particularly as a soil conditioner.
Resumo:
Ni-Co/Al2O3-MgO-ZrO2 nanocatalyst with utilization of two different zirconia precursors, namely, zirconyl nitrate hydrate (ZNH) and zirconyl nitrate solution (ZNS), was synthesized via the sol-gel method. The physiochemical properties of nanocatalysts were characterized by XRD, FESEM, EDX, BET and FTIR analyses and employed for syngas production from CO2-reforming of CH4. XRD patterns, exhibiting proper crystalline structure and homogeneous dispersion of active phase for the nanocatalyst ZNS precursor employed (NCAMZ-ZNS). FESEM and BET results of NCAMZ-ZNS presented more uniform morphology and smaller particle size and consequently higher surface areas. In addition, average particle size of NCAMZ-ZNS was 15.7 nm, which is close to the critical size for Ni-Co catalysts to avoid carbon formation. Moreover, FESEM analysis indicated both prepared samples were nanoscale. EDX analysis confirmed the existence of various elements used and also supported the statements made in the XRD and FESEM analyses regarding dispersion. Based on the excellent physiochemical properties, NCAMZ-ZNS exhibited the best reactant conversion across all of the evaluated temperatures, e.g. CH4 and CO2 conversions were 97.2 and 99% at 850 ºC, respectively. Furthermore, NCAMZ-ZNS demonstrated a stable yield with H2/CO close to unit value during the 1440 min stability test.