980 resultados para muscular synergy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducción: La incidencia lesional en el fútbol está muy documentada. Dentro de todas las lesiones, las musculares son las que presentan mayor incidencia, dentro de ellas, las que se refieren al aductor medio, ocupan el segundo lugar, sólo por detrás de las lesiones en los isquiotibiales. Objetivo: diseñar y aplicar un programa de readaptación para una rotura muscular de grado II en el aductor mediano, asegurando la completa recuperación del jugador y evitando posibles recidivas futuras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta pesquisa teve por objetivo fazer uma avaliação neuropsicológica das funções cognitivas de crianças com Distrofia Muscular de Duchenne. Avaliou dez meninos, com idade entre seis e quinze anos. Utilizou-se da Escala de Inteligência Wechsler para crianças, WISC III, fazendo uma análise quantitativa e qualitativa dos dados. Os resultados quantitativos indicaram QIV muito diversificado entre os sujeitos, variando entre 53 e 97, sendo o QIVM = 77.4. A mesma variação foi observada no QIE, com resultados variando entre 57 e 88, com QIEM=71.2. O QITM foi de 71.4. . Esses resultados localizam-se na faixa limítrofe, dentro das variações normais da inteligência. A análise qualitativa fatorial segundo Figueiredo, registrou maior rebaixamento no fator III, Resistência à Distração, seguido do fator IV, Velocidade de Processamento. Na Escala Verbal, os subtestes que implicavam em utilização da Memória foram os mais comprometidos, comprovando pesquisas anteriores. Na Escala de Execução, o maior prejuízo observado foi devido à dificuldade em códigos e símbolos, sob pressão de tempo. Não foi observada nas crianças com resultados mais baixos, diferença significativa entre o QIV e o QIE. A transposição dos dados para a leitura neuropsicológica utilizou-se do diagrama de McFie. A grande diversidade dos resultados individuais recomenda estudos posteriores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta pesquisa teve por objetivo fazer uma avaliação neuropsicológica das funções cognitivas de crianças com Distrofia Muscular de Duchenne. Avaliou dez meninos, com idade entre seis e quinze anos. Utilizou-se da Escala de Inteligência Wechsler para crianças, WISC III, fazendo uma análise quantitativa e qualitativa dos dados. Os resultados quantitativos indicaram QIV muito diversificado entre os sujeitos, variando entre 53 e 97, sendo o QIVM = 77.4. A mesma variação foi observada no QIE, com resultados variando entre 57 e 88, com QIEM=71.2. O QITM foi de 71.4. . Esses resultados localizam-se na faixa limítrofe, dentro das variações normais da inteligência. A análise qualitativa fatorial segundo Figueiredo, registrou maior rebaixamento no fator III, Resistência à Distração, seguido do fator IV, Velocidade de Processamento. Na Escala Verbal, os subtestes que implicavam em utilização da Memória foram os mais comprometidos, comprovando pesquisas anteriores. Na Escala de Execução, o maior prejuízo observado foi devido à dificuldade em códigos e símbolos, sob pressão de tempo. Não foi observada nas crianças com resultados mais baixos, diferença significativa entre o QIV e o QIE. A transposição dos dados para a leitura neuropsicológica utilizou-se do diagrama de McFie. A grande diversidade dos resultados individuais recomenda estudos posteriores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder characterized by an insidious onset and progressive course. The disease has a frequency of about 1 in 20,000 and is transmitted in an autosomal dominant fashion with almost complete penetrance. Deletion of an integral number of tandemly arrayed 3.3-kb repeat units (D4Z4) on chromosome 4q35 is associated with FSHD but otherwise the molecular basis of the disease and its pathophysiology remain obscure. Comparison of mRNA populations between appropriate cell types can facilitate identification of genes relevant to a particular biological or pathological process. In this report, we have compared mRNA populations of FSHD and normal muscle. Unexpectedly, the dystrophic muscle displayed profound alterations in gene expression characterized by severe underexpression or overexpression of specific mRNAs. Intriguingly, many of the deregulated mRNAs are muscle specific. Our results suggest that a global misregulation of gene expression is the underlying basis for FSHD, distinguishing it from other forms of muscular dystrophy. The experimental approach used here is applicable to any genetic disorder whose pathogenic mechanism is incompletely understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pairs of transcriptional activators in prokaryotes have been shown to activate transcription synergistically from promoters with two activator binding sites. In some cases, such synergistic effects result from cooperative binding, but in other cases each DNA-bound activator plays a direct role in the activation process by interacting simultaneously with separate surfaces of RNA polymerase. In such cases, each DNA-bound activator must possess a functional activating region, the surface that mediates the interaction with RNA polymerase. When transcriptional activation depends on two or more identical activators, it is not straightforward to test the requirement of each activator for a functional activating region. Here we describe a method for directing a mutationally altered activator to either one or the other binding site, and we demonstrate the use of this method to examine the mechanism of transcriptional activator synergy by the Escherichia coli cyclic AMP receptor protein (CRP) working at an artificial promoter bearing two CRP-binding sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding: This study is supported by the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London (FM and HZ), the Medical Research Council grant (grant reference MR/L013142/1, FM), SMA-Europe grant (FM and HZ) and Great Ormond Street Hospital Children’s Charity grants (FM and JM). JEM is supported by Great Ormond Street Hospital Children’s Charity. PS is supported by Bill Marshall Fellowship and The CP Charitable Trust at Great Ormond Street Hospital and UCL. SHP is supported by SMA Trust and Euan MacDonald Centre for Motor Neurone Disease Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is an inherited muscle-wasting disease caused by the absence of a muscle cytoskeletal protein, dystrophin. We have previously shown that utrophin, the autosomal homologue of dystrophin, is able to compensate for the absence of dystrophin in a mouse model of DMD; we have therefore undertaken a detailed study of the transcriptional regulation of utrophin to identify means of effecting its up-regulation in DMD muscle. We have previously isolated a promoter element lying within the CpG island at the 5′ end of the gene and have shown it to be synaptically regulated in vivo. In this paper, we show that there is an alternative promoter lying within the large second intron of the utrophin gene, 50 kb 3′ to exon 2. The promoter is highly regulated and drives transcription of a widely expressed unique first exon that splices into a common full-length mRNA at exon 3. The two utrophin promoters are independently regulated, and we predict that they respond to discrete sets of cellular signals. These findings significantly contribute to understanding the molecular physiology of utrophin expression and are important because the promoter reported here provides an alternative target for transcriptional activation of utrophin in DMD muscle. This promoter does not contain synaptic regulatory elements and might, therefore, be a more suitable target for pharmacological manipulation than the previously described promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initiation of fibronectin (FN) matrix assembly is dependent on specific interactions between FN and cell surface integrin receptors. Here, we show that de novo FN matrix assembly exhibits a slow phase during initiation of fibrillogenesis followed by a more rapid growth phase. Mn2+, which acts by enhancing integrin function, increased the rate of FN fibril growth, but only after the initial lag phase. The RGD cell-binding sequence in type III repeat 10 is an absolute requirement for initiation by α5β1 integrin. To investigate the role of the cell-binding synergy site in the adjacent repeat III9, a full-length recombinant FN containing a synergy mutation, FN(syn−), was tested for its ability to form fibrils. Mutation of this site drastically reduced FN assembly by CHOα5 cells. Only sparse short fibrils were formed even after prolonged incubation, indicating that FN(syn−) is defective in progression of the assembly process. These results show that the synergy site is essential for α5β1-mediated accumulation of a FN matrix. However, the incorporation of FN(syn−) into fibrils and the deoxycholate-insoluble matrix could be stimulated by Mn2+. Therefore, exogenous activation of integrin receptors can overcome the requirement for FN’s synergy site as well as modulate the rate of FN matrix formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug resistance pumps (MDRs) protect microbial cells from both synthetic and natural antimicrobials. Amphipathic cations are preferred substrates of MDRs. Berberine alkaloids, which are cationic antimicrobials produced by a variety of plants, are readily extruded by MDRs. Several Berberis medicinal plants producing berberine were found also to synthesize an inhibitor of the NorA MDR pump of a human pathogen Staphylococcus aureus. The inhibitor was identified as 5′-methoxyhydnocarpin (5′-MHC), previously reported as a minor component of chaulmoogra oil, a traditional therapy for leprosy. 5′-MHC is an amphipathic weak acid and is distinctly different from the cationic substrates of NorA. 5′-MHC had no antimicrobial activity alone but strongly potentiated the action of berberine and other NorA substrates against S. aureus. MDR-dependent efflux of ethidium bromide and berberine from S. aureus cells was completely inhibited by 5′-MHC. The level of accumulation of berberine in the cells was increased strongly in the presence of 5′-MHC, indicating that this plant compound effectively disabled the bacterial resistance mechanism against the berberine antimicrobial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SMN1 and SMN2 (survival motor neuron) encode identical proteins. A critical question is why only the homozygous loss of SMN1, and not SMN2, results in spinal muscular atrophy (SMA). Analysis of transcripts from SMN1/SMN2 hybrid genes and a new SMN1 mutation showed a direct relationship between presence of disease and exon 7 skipping. We have reported previously that the exon-skipped product SMNΔ7 is partially defective for self-association and SMN self-oligomerization correlated with clinical severity. To evaluate systematically which of the five nucleotides that differ between SMN1 and SMN2 effect alternative splicing of exon 7, a series of SMN minigenes was engineered and transfected into cultured cells, and their transcripts were characterized. Of these nucleotide differences, the exon 7 C-to-T transition at codon 280, a translationally silent variance, was necessary and sufficient to dictate exon 7 alternative splicing. Thus, the failure of SMN2 to fully compensate for SMN1 and protect from SMA is due to a nucleotide exchange (C/T) that attenuates activity of an exonic enhancer. These findings demonstrate the molecular genetic basis for the nature and pathogenesis of SMA and illustrate a novel disease mechanism. Because individuals with SMA retain the SMN2 allele, therapy targeted at preventing exon 7 skipping could modify clinical outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ullrich syndrome is a recessive congenital muscular dystrophy affecting connective tissue and muscle. The molecular basis is unknown. Reverse transcription–PCR amplification performed on RNA extracted from fibroblasts or muscle of three Ullrich patients followed by heteroduplex analysis displayed heteroduplexes in one of the three genes coding for collagen type VI (COL6). In patient A, we detected a homozygous insertion of a C leading to a premature termination codon in the triple-helical domain of COL6A2 mRNA. Both healthy consanguineous parents were carriers. In patient B, we found a deletion of 28 nucleotides because of an A → G substitution at nucleotide −2 of intron 17 causing the activation of a cryptic acceptor site inside exon 18. The second mutation was an exon skipping because of a G → A substitution at nucleotide −1 of intron 23. Both mutations are present in an affected brother. The first mutation is also present in the healthy mother, whereas the second mutation is carried by their healthy father. In patient C, we found only one mutation so far—the same deletion of 28 nucleotides found in patient B. In this case, it was a de novo mutation, as it is absent in her parents. mRNA and protein analysis of patient B showed very low amounts of COL6A2 mRNA and of COL6. A near total absence of COL6 was demonstrated by immunofluorescence in fibroblasts and muscle. Our results demonstrate that Ullrich syndrome is caused by recessive mutations leading to a severe reduction of COL6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal nitric oxide synthase (nNOS) in fast-twitch skeletal muscle fibers is primarily particulate in contrast to its greater solubility in brain. Immunohistochemistry shows nNOS localized to the sarcolemma, with enrichment at force transmitting sites, the myotendinous junctions, and costameres. Because this distribution is similar to dystrophin, we determined if nNOS expression was affected by the loss of dystrophin. Significant nNOS immunoreactivity and enzyme activity was absent in skeletal muscle tissues from patients with Duchenne muscular dystrophy. Similarly, in dystrophin-deficient skeletal muscles from mdx mice both soluble and particulate nNOS was greatly reduced compared with C57 control mice. nNOS mRNA was also reduced in mdx muscle in contrast to mRNA levels for a dystrophin binding protein, alpha 1-syntrophin. nNOS levels increased dramatically from 2 to 52 weeks of age in C57 skeletal muscle, which may indicate a physiological role for NO in aging-related processes. Biochemical purification readily dissociates nNOS from the dystrophin-glycoprotein complex. Thus, nNOS is not an integral component of the dystrophin-glycoprotein complex and is not simply another dystrophin-associated protein since the expression of both nNOS mRNA and protein is affected by dystrophin expression.