970 resultados para mixing of states


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis is first and foremost the examination of the notion and consequences of ‘state failure’ in international law. The disputes surrounding criteria for creation and recognition of states pertain to efforts to analyse legal and factual issues unravelling throughout the continuing existence of states, as best evidenced by the ‘state failure’ phenomenon. It is argued that although the ‘statehood’ of failed states remains uncontested, their sovereignty is increasingly considered to be dependent on the existence of effective governments. The second part of this thesis focuses on the examinations of the legal consequences of the continuing existence of failed states in the context of jus ad bellum. Since the creation of the United Nations the ability of states to resort to armed force without violating what might be considered as the single most important norm of international law, has been considerably limited. State failure and increasing importance of non-state actors has become a greatly topical issue within recent years in both scholarship and the popular imagination. There have been important legal developments within international law, which have provoked much academic, and in particular, legal commentary. On one level, the thesis contributes to this commentary. Despite the fact that the international community continues to perpetuate a notion of ‘statehood’ which allows the state-centric system of international law to exist, when dealing with practical and political realities of state failure, international law may no longer consider external sovereignty of states as an undeniable entitlement to statehood. Accordingly, the main research question of this thesis is whether the implicit and explicit invocation of the state failure provides sufficient legal basis for the intervention in self-defence against non-state actors in located in failed states. It has been argued that state failure has a profound impact, the extent of which is yet to be fully explored, on the modern landscape of peace and security.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Biarjmand granitoids and granitic gneisses in northeast Iran are part of the Torud–Biarjmand metamorphic complex, where previous zircon U–Pb geochronology show ages of ca. 554–530 Ma for orthogneissic rocks. Our new U–Pb zircon ages confirm a Cadomian age and show that the granitic gneiss is ~30 million years older (561.3 ± 4.7 Ma) than intruding granitoids(522.3 ± 4.2 Ma; 537.7 ± 4.7 Ma). Cadomian magmatism in Iran was part of an approximately 100-million-year-long episode of subduction-related arc and back-arc magmatism, which dominated the whole northern Gondwana margin, from Iberia to Turkey and Iran. Major REE and trace element data show that these granitoids have calc-alkaline signatures. Their zircon O (δ18O = 6.2–8.9‰) and Hf (–7.9 to +5.5; one point with εHf ~ –17.4) as well as bulk rock Nd isotopes (εNd(t)= –3 to –6.2) show that these magmas were generated via mixing of juvenile magmas with an older crust and/or melting of middle continental crust. Whole-rock Nd and zircon Hf model ages (1.3–1.6 Ga) suggest that this older continental crust was likely to have been Mesoproterozoic or even older. Our results, including variable zircon εHf(t) values, inheritance of old zircons and lack of evidence for juvenile Cadomian igneous rocks anywhere in Iran, suggest that the geotectonic setting during late Ediacaran and early Cambrian time was a continental magmatic arc rather than back-arc for the evolution of northeast Iran Cadomian igneous rocks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The performance of supersonic engine inlets and external aerodynamic surfaces can be critically affected by shock wave / boundary layer interactions (SBLIs), whose severe adverse pressure gradients can cause boundary layer separation. Currently such problems are avoided primarily through the use of boundary layer bleed/suction which can be a source of significant performance degradation. This study investigates a novel type of flow control device called micro-vortex generators (µVGs) which may offer similar control benefits without the bleed penalties. µVGs have the ability to alter the near-wall structure of compressible turbulent boundary layers to provide increased mixing of high speed fluid which improves the boundary layer health when subjected to flow disturbance. Due to their small size,µVGs are embedded in the boundary layer which provide reduced drag compared to the traditional vortex generators while they are cost-effective, physically robust and do not require a power source. To examine the potential of µVGs, a detailed experimental and computational study of micro-ramps in a supersonic boundary layer at Mach 3 subjected to an oblique shock was undertaken. The experiments employed a flat plate boundary layer with an impinging oblique shock with downstream total pressure measurements. The moderate Reynolds number of 3,800 based on displacement thickness allowed the computations to use Large Eddy Simulations without the subgrid stress model (LES-nSGS). The LES predictions indicated that the shock changes the structure of the turbulent eddies and the primary vortices generated from the micro-ramp. Furthermore, they generally reproduced the experimentally obtained mean velocity profiles, unlike similarly-resolved RANS computations. The experiments and the LES results indicate that the micro-ramps, whose height is h≈0.5δ, can significantly reduce boundary layer thickness and improve downstream boundary layer health as measured by the incompressible shape factor, H. Regions directly behind the ramp centerline tended to have increased boundary layer thickness indicating the significant three-dimensionality of the flow field. Compared to baseline sizes, smaller micro-ramps yielded improved total pressure recovery. Moving the smaller ramps closer to the shock interaction also reduced the displacement thickness and the separated area. This effect is attributed to decreased wave drag and the closer proximity of the vortex pairs to the wall. In the second part of the study, various types of µVGs are investigated including micro-ramps and micro-vanes. The results showed that vortices generated from µVGs can partially eliminate shock induced flow separation and can continue to entrain high momentum flux for boundary layer recovery downstream. The micro-ramps resulted in thinner downstream displacement thickness in comparison to the micro-vanes. However, the strength of the streamwise vorticity for the micro-ramps decayed faster due to dissipation especially after the shock interaction. In addition, the close spanwise distance between each vortex for the ramp geometry causes the vortex cores to move upwards from the wall due to induced upwash effects. Micro-vanes, on the other hand, yielded an increased spanwise spacing of the streamwise vortices at the point of formation. This resulted in streamwise vortices staying closer to the wall with less circulation decay, and the reduction in overall flow separation is attributed to these effects. Two hybrid concepts, named “thick-vane” and “split-ramp”, were also studied where the former is a vane with side supports and the latter has a uniform spacing along the centerline of the baseline ramp. These geometries behaved similar to the micro-vanes in terms of the streamwise vorticity and the ability to reduce flow separation, but are more physically robust than the thin vanes. Next, Mach number effect on flow past the micro-ramps (h~0.5δ) are examined in a supersonic boundary layer at M=1.4, 2.2 and 3.0, but with no shock waves present. The LES results indicate that micro-ramps have a greater impact at lower Mach number near the device but its influence decays faster than that for the higher Mach number cases. This may be due to the additional dissipation caused by the primary vortices with smaller effective diameter at the lower Mach number such that their coherency is easily lost causing the streamwise vorticity and the turbulent kinetic energy to decay quickly. The normal distance between the vortex core and the wall had similar growth indicating weak correlation with the Mach number; however, the spanwise distance between the two counter-rotating cores further increases with lower Mach number. Finally, various µVGs which include micro-ramp, split-ramp and a new hybrid concept “ramped-vane” are investigated under normal shock conditions at Mach number of 1.3. In particular, the ramped-vane was studied extensively by varying its size, interior spacing of the device and streamwise position respect to the shock. The ramped-vane provided increased vorticity compared to the micro-ramp and the split-ramp. This significantly reduced the separation length downstream of the device centerline where a larger ramped-vane with increased trailing edge gap yielded a fully attached flow at the centerline of separation region. The results from coarse-resolution LES studies show that the larger ramped-vane provided the most reductions in the turbulent kinetic energy and pressure fluctuation compared to other devices downstream of the shock. Additional benefits include negligible drag while the reductions in displacement thickness and shape factor were seen compared to other devices. Increased wall shear stress and pressure recovery were found with the larger ramped-vane in the baseline resolution LES studies which also gave decreased amplitudes of the pressure fluctuations downstream of the shock.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recently reported Monte Carlo Random Path Sampling method (RPS) is here improved and its application is expanded to the study of the 2D and 3D Ising and discrete Heisenberg models. The methodology was implemented to allow use in both CPU-based high-performance computing infrastructures (C/MPI) and GPU-based (CUDA) parallel computation, with significant computational performance gains. Convergence is discussed, both in terms of free energy and magnetization dependence on field/temperature. From the calculated magnetization-energy joint density of states, fast calculations of field and temperature dependent thermodynamic properties are performed, including the effects of anisotropy on coercivity, and the magnetocaloric effect. The emergence of first-order magneto-volume transitions in the compressible Ising model is interpreted using the Landau theory of phase transitions. Using metallic Gadolinium as a real-world example, the possibility of using RPS as a tool for computational magnetic materials design is discussed. Experimental magnetic and structural properties of a Gadolinium single crystal are compared to RPS-based calculations using microscopic parameters obtained from Density Functional Theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A micro gas sensor has been developed by our group for the detection of organo-phosphate vapors using an aqueous oxime solution. The analyte diffuses from the high flow rate gas stream through a porous membrane to the low flow rate aqueous phase. It reacts with the oxime PBO (1-Phenyl-1,2,3,-butanetrione 2-oxime) to produce cyanide ions, which are then detected electrochemically from the change in solution potential. Previous work on this oxime based electrochemistry indicated that the optimal buffer pH for the aqueous solution was approximately 10. A basic environment is needed for the oxime anion to form and the detection reaction to take place. At this specific pH, the potential response of the sensor to an analyte (such as acetic anhydride) is maximized. However, sensor response slowly decreases as the aqueous oxime solution ages, by as much as 80% in first 24 hours. The decrease in sensor response is due to cyanide which is produced during the oxime degradation process, as evidenced by the cyanide selective electrode. Solid phase micro-extraction carried out on the oxime solution found several other possible degradation products, including acetic acid, N-hydroxy benzamide, benzoic acid, benzoyl cyanide, 1-Phenyl 1,3-butadione, 2-isonitrosoacetophenone and an imine derived from the oxime. It was concluded that degradation occurred through nucleophilic attack by a hydroxide or oxime anion to produce cyanide, as well as a nitrogen atom rearrangement similar to Beckmann rearrangement. The stability of the oxime in organic solvents is most likely due to the lack of water, and specifically hydroxide ions. The reaction between oxime and organo-phosphate to produce cyanide ions requires hydroxide ions, and therefore pure organic solvents are not compatible with the current micro-sensor electrochemistry. By combining a concentrated organic oxime solution with the basic aqueous buffer just prior to being used in the detection process, oxime degradation can be avoided while preserving the original electrochemical detection scheme. Based on beaker cell experiments with selective cyanide sensitive electrodes, ethanol was chosen as the best organic solvent due to its stabilizing effect on the oxime, minimal interference with the aqueous electrochemistry, and compatibility with the current microsensor material (PMMA). Further studies showed that ethanol had a small effect on micro-sensor performance by reducing the rate of cyanide production and decreasing the overall response time. To avoid incomplete mixing of the aqueous and organic solutions, they were pre-mixed externally at a 10:1 ratio, respectively. To adapt the microsensor design to allow for mixing to take place within the device, a small serpentine channel component was fabricated with the same dimensions and material as the original sensor. This allowed for seamless integration of the microsensor with the serpentine mixing channel. Mixing in the serpentine microchannel takes place via diffusion. Both detector potential response and diffusional mixing improve with increased liquid residence time, and thus decreased liquid flowrate. Micromixer performance was studies at a 10:1 aqueous buffer to organic solution flow rate ratio, for a total rate of 5.5 μL/min. It was found that the sensor response utilizing the integrated micromixer was nearly identical to the response when the solutions were premixed and fed at the same rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The comprehensive study on the coupling of magnetism, electrical polarization and the crystalline lattice with the off-stoichiometric effects in self-doped multiferroic hexagonal h-LuMnxO3±δ (0.92≤x≤1.12) ceramic oxides was carried out for the PhD work. There is a complex coupling of the three ferroic degrees. The cancelation of the magnetic moments of ions in the antiferromagnetic order, electric polarization with specific vortex/antivortex topology and lattice properties have pushed researchers to find out ways to disclose the underlying physics and chemistry of magneto-electric and magneto-elastic couplings of h-RMnO3 multiferroic materials. In this research work, self-doping of Lu-sites or Mn-sites of h-LuMnxO3±δ ceramics prepared via solid state route was done to pave a way for deeper understanding of the antiferromagnetic transition, the weak ferromagnetism often reported in the same crystalline lattices and the ferroelectric properties coupled to the imposed lattice changes. Accordingly to the aim of the PhD thesis, the objectives set for the sintering study in the first chapter on experimental results were two. First, study of sintering off-stoichiometric samples within conditions reported in the bibliography and also extracted from the phase diagrams of the LuMnxO3±δ, with a multiple firings ending with a last high temperature step at 1300ºC for 24 hours. Second, explore longer annealing times of up to 240 hours at the fixed temperature of 1300 ºC in a search for improving the properties of the solid solution under study. All series of LuMnxO3±δ ceramics for each annealing time were characterized to tentatively build a framework enabling comparison of measured properties with results of others available in literature. XRD and Rietveld refinement of data give the evolution the lattice parameters as a function to x. Shrinkage of the lattice parameters with increasing x values was observed, the stability limit of the solid solution being determined by analysis of lattice parameters. The evolution of grain size and presence of secondary phases have been investigated by means of TEM, SEM, EDS and EBSD techniques. The dependencies of grain growth and regression of secondary phases on composition x and time were further characterized. Magnetic susceptibility of samples and magnetic irreversibility were extensively examined in the present work. The dependency of magnetic susceptibility, Neel ordering transition and important magnetic parameters are determined and compared to observation in other multiferroics in the following chapter of the thesis. As a tool of high sensitivity to detect minor traces of the secondary phase hausmannite, magnetic measurements are suggested for cross-checking of phase diagrams. Difficulty of previous studies on interpreting the magnetic anomaly below 43 K in h-RMnO3 oxides was discussed and assigned to the Mn3O4 phase, with supported of the electron microscopy. Magneto-electric coupling where AFM ordering is coupled to dielectric polarization is investigated as a function of x and of sintering condition via frequency and temperature dependent complex dielectric constant measurements in the final chapter of the thesis. Within the limits of solid solubility, the crystalline lattice of off-stoichiometric ceramics was shown to preserve the magneto-electric coupling at TN. It represents the first research work on magneto-electric coupling modified by vacancy doping to author’s knowledge. Studied lattices would reveal distortions at the atomic scale imposed by local changes of x dependent on sintering conditions which were widely inspected by using TEM/STEM methods, complemented with EDS and EELS spectroscopy all together to provide comprehensive information on cross coupling of distortions, inhomogeneity and electronic structure assembled and discussed in a specific chapter. Internal interfaces inside crystalline grains were examined. Qualitative explanations of the measured magnetic and ferroelectric properties were established in relation to observed nanoscale features of h-LuMnxO3±δ ceramics. Ferroelectric domains and topological defects are displayed both in TEM and AFM/PFM images, the later technique being used to look at size, distribution and switching of ferroelectric domains influenced by vacancy doping at the micron scale bridging to complementary TEM studies on the atomic structure of ferroelectric domains. In support to experimental study, DFT simulations using Wien2K code have been carried out in order to interpret the results of EELS spectra of O K-edge and to obtain information on the cation hybridization to oxygen ions. The L3,2 edges of Mn is used to access the oxidation state of the Mn ions inside crystalline grains. In addition, rehybridization driven ferroelectricity is also evaluated by comparing the partial density of states of the orbitals of all ions of the samples, also the polarization was calculated and correlated to the off-stoichiometric effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity have been made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C , the thermal conductivity K, ex and the anomalous temperature dependence of the ultrasound velocity Deltav/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that K and Deltav/v are determined by the same localized excitations responsible for C , but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. Furthermore, a consistent account for the measured C , K, ex and Deltav/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A quasigeostrophic model is developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasigeostrophic framework considered before since it takes into account the stratification within the surface mixed layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant stratification layers: a finite-thickness surface layer (or the mixed layer) and an infinitely deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive equation numerical simulation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the north Atlantic subtropical gyre, the oceanic vertical structure of density is characterized by a region of rapid increase with depth. This layer is called the permanent pycnocline. The permanent pycnocline is found below a surface mode water ,which are ventilated every winter when penetrated locally by the mixed layer. Assessing the structure and variability of the permanent pycnocline is of a major interest in the understanding of the climate system because the pycnocline layer delimits important heat and anthropogenic reservoir. Moreover, the heat content structure translate into changes in the large scale stratification feature, such as the permanent pycnocline. We developed a new objective algorithm for the characterization of the large scale structure of the permanent pycnocline (OAC-P). Argo data have been used with OAC-P to provide a detailed description of the mean structure of the North-Atlantic subtropical pycnocline (e.g.: depth, thickness, temperature, salinity, density, potential vorticity). Results reveal a surprisingly complex structure with inhomogeneous properties. While the classical bowl shape of the pycnocline depth is captured, much more complex pycnocline structure emerges at the regional scale. In the southern recirculation gyre of the Gulf Stream Extension, the pycnocline is deep, thick, the maximum of stratification is found in the middle on the layer and follow an isopycnal surface. But local processes influence and modify this textbook description and the pycnocline is characterized by a vertically asymmetric structure and gradients in thermohaline properties. T/S distribution along the permanent pycnocline depth is complex and reveals a diversity of water masses resulting from mixing of different source waters. We will present the observed mean structure of the North-Atlantic subtropical permanent pycnocline and relate it to physical processes that constraint it.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Indoor Air 2016 - The 14th International Conference Indoor Air Quality and Climate

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper describes the latest change in the research on social and economic development of states. This change is characterized mainly by a strong emphasis put on the role of institutions as key instruments of reducing the development gap between countries. It is argued that in the years after 1989 institutions have disappeared from mainstream academia and major intellectual debates because of: (1) the widespread belief in global convergence of capitalism and (2) the modernization theory which prevailed in the social science in the 1990s. The article indicates that institutions were once again brought into focus as a result of (1) a wider debate about the institutional sources of growth and development sparked by Acemoglu and Robinson’s Why Nations Fail, (2) the beginning of the global economic crisis of 2008 triggered by the fall of American investment bank Lehman Brothers (3) diversified consequences of the economic crisis seen all over Europe and the USA which illustrate (4) the institutional varieties of capitalism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A parameterization of mesoscale eddy fluxes in the ocean should be consistent with the fact that the ocean interior is nearly adiabatic. Gent and McWilliams have described a framework in which this can be approximated in L-coordinate primitive equation models by incorporating the effects of eddies on the buoyancy field through an eddy-induced velocity. It is also natural to base a parameterization on the simple picture of the mixing of potential vorticity in the interior and the mixing of buoyancy at the surface. The authors discuss the various constraints imposed by these two requirements and attempt to clarify the appropriate boundary conditions on the eddy-induced velocities at the surface. Quasigeostrophic theory is used as a guide to the simplest way of satisfying these constraints.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Delta(47)), as much as similar to 0.2 parts per thousand lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 degrees C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.