QuasiGeostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field
Data(s) |
01/01/2016
|
---|---|
Resumo |
A quasigeostrophic model is developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasigeostrophic framework considered before since it takes into account the stratification within the surface mixed layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant stratification layers: a finite-thickness surface layer (or the mixed layer) and an infinitely deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive equation numerical simulation |
Formato |
application/pdf |
Identificador |
http://archimer.ifremer.fr/doc/00309/42031/41330.pdf DOI:10.1175/JPO-D-14-0178.1 |
Idioma(s) |
eng |
Publicador |
Amer Meteorological Soc |
Direitos |
2016 American Meteorological Society info:eu-repo/semantics/openAccess restricted use |
Fonte |
Journal Of Physical Oceanography (0022-3670) (Amer Meteorological Soc), 2016-01 , Vol. 46 , N. 1 , P. 275-287 |
Palavras-Chave | #Circulation #Dynamics #Ageostrophic circulations #Mesoscale processes #Ocean dynamics #Vertical motion #Models and modeling #Diagnostics #Quasigeostrophic models |
Tipo |
text Publication info:eu-repo/semantics/article |