975 resultados para intramolecular catalysis
Resumo:
Cyclic peptide architectures can be easily synthesized from cysteine-containing peptides with appending maleimides, free or protected, through an intramolecular Michael-type reaction. After peptide assembly, the peptide can cyclize either during the trifluoroacetic acid treatment, if the maleimide is not protected, or upon deprotection of the maleimide. The combination of free and protected maleimide moieties and two orthogonally protected cysteines gives access to structurally different bicyclic peptides with isolated or fused cycles.
Resumo:
The hydrocarbonylation reaction of ethanol with a CO/H2 mixture assisted by Ru(acac)3/iodide was investigated. Bronsted and Lewis acids and iodides salt were used as homogeneous promoters. The etherification reaction was the main reaction under typical acidic conditions of the catalytic system. When a hydrocarbon solvent (toluene) was added to the initial reaction, the alcohol conversion and the carbonylation products were increased. The catalytic activity of the Bronsted acids (conv. EtOH = 71-92%) was higher than that of the Lewis acids promoters (conv. EtOH = 65-85%). The salt present the lower catalytic activity among the promoters used. The long time reaction carried out with ethanol showed an increase of the product selectivity of the homologation and carbonylation reactions while the etherification reaction selectivity decreased. The recycled ether led to 60-65% ethanol conversion to C5 and C6 products. The main catalytic species are H+[Ru(CO)3I3]-, [HRu3(CO)11]- and [HRu(CO)4]-. The first one is active in the carbonylation and homologation reactions of alcohols while the two others take part only in the homologation reaction.
Resumo:
Membrane reactors are reviewed with emphasis in their applications in catalysis field. The basic principles of these systems are presented as well as a historical development. The several kinds of catalytic membranes and their preparations are discussed including the problems, needs and challenges to be solved in order to use these reactors in commercial processes. Some applications of inorganic membrane reactors are also shown. It was concluded that these systems have a great potential for improving yield and selectivity of high temperature catalytic reactions. However, it is still an imerging technology with a need for a lot of fundamental research; several challenges should be overcome for the successful commercial application of these systems.
Resumo:
Scanning tunnelling microscopy (STM) was used to characterise the basal surface of fresh cleaved crystals of 2H-WS2. Although no impurity or stacking faults could be detected by X-ray diffraction, STM images obtained with negative bias voltage showed two kinds of defects. These defects were attributed to an iodine derivative used as transport agent. In a flat surface free of defects, an image with atomic resolution was achieved with sulphur distances and angles as expected for hexagonal symmetry of 2H-WS2.
Resumo:
The vast binding repertoire of the immune system has been exploited for the generation of tailor-made selective catalysts. Since the first reports of chemical reactions catalyzed by antibodies were published, research in this field, which borders chemistry and biology, has been rapidly established and a number of catalytic antibodies that carry out a wide range of reactions, have been developed. Recent advances have led to antibodies that catalyse complex, multi-step reactions and difficult chemical transformations, as well as reactions that do not have an organic equivalent at all. Current research in this field has been devoted to practical applications of this technology.
Resumo:
The approaches in asymmetric synthesis as the chiron approach, chiral auxiliaries, chiral reagents and asymmetric catalysis are described in a simplified way.
Resumo:
The synthesis, characterization and some applications in catalysis of pillared clays are described at an introductory level. The use of x-ray diffraction, surface area measurements, thermal analysis, IR spectrophotometry and solid-state NMR in the characterization of pillared clays is briefly discussed. Pillarization followed by doping or introduction of metal clusters into clays could lead to the development of selective heterogeneous catalysts.
Resumo:
The broad variety of hydrogenation methods of polydienes is presented. Homogeneous and heterogeneous catalysis are reviewed emphasizing also hydrogen transfer from donor compounds.
Resumo:
Ab initio Hartree-Fock (HF), Density Functional (B3LYP) and electron correlation (MP2) methods have been used to caracterize the aqueous medium intramolecular hydrogen bond in a-alanine. The 6-31G* and 6-31++G** were taken from Gaussian94 library. We were concerned on the structure of three conformers of a-alanine, in their neutral form plus on the structure of the zwitterionic form (Z). The Z structure is a stationary point at the HF/6-31G* level but it is not when diffuse functions and electron correlation are included. This results shows that the Z form does not exist in the gas phase. The inclusion of solvent effects changed significantly the results obtained in gas phase, therefore this inclusion make the Z form a stationary point within all level of theory, and the relative energy depends dramatically on the level of calculation.
Resumo:
The Surface Enhanced Raman Scattering (SERS) effect was observed for the first time in 1974, but it was only considered a new effect three years later, hence, nearly twenty years ago. Since its discovery, a significant amount of investigations have been performed aiming at to clarify the nature of the observed enhancement, to improve the surface stability and to establish applications which nowadays range from the study of biomolecules to catalysis. Some of the more relevant aspects of this effect which have been examined across the last two decades are summarized in this paper which presents the introductory aspects of SERS alongside with several of its applications.
Resumo:
The synthesis of ten symmetrically and unsymmetrically substituted 1,3,5-triazines by Phase Transfer Catalysis (PTC) method is described. Their toxicities were determined against Artemia salina Leach. The LD50 values have also been obtained for these compounds.
Resumo:
Since its discovery, phase transfer catalysis (PTC) has grown considerably and nowadays is one of the most versatile preparative methods. The search for new catalysts, their use in PTC asymmetric synthesis and the attempts to understand their mechanistic role are modern and exciting topics of investigation. A review on main achievements in the last two decades is presented.
Resumo:
A review with 94 references focusing on mu3-oxo-triruthenium carboxylate clusters is presented. The electronic, magnetic, electrochemical, and catalytic properties of these compounds are discussed. Main synthetic routes and structural characteristics, including their use as building blocks in supramolecular systems are described.
Resumo:
For economical and ecological reasons, synthetic chemists are confronted with the increasing obligation of optimizing their synthetic methods. Maximizing efficiency and minimizing costs in the production of molecules and macromolecules constitutes, therefore, one of the most exciting challenges of synthetic chemistry. The ideal synthesis should produce the desired product in 100% yield and selectivity, in a safe and environmentally acceptable process. In this highlight the concepts of atom economy, molecular engineering and biphasic organometallic catalysis, which address these issues at the molecular level for the generation of "green" technologies, are introduced and discussed.
Resumo:
In this review article, we give a general introduction on the mechanisms involved in organic chemiluminescence, where three basic models for excited state formation are presented. The chemiluminescence properties of 1,2-dioxetanes - four membered ring peroxides - are briefly outlined in the second part. In the main part, the mechanisms involved in the decomposition of 1,2-dioxetanes and analogous peroxides are discussed: (i) the unimolecular decomposition of 1,2-dioxetanes; (ii) the electron transfer catalyzed decomposition of peroxides by an intermolecular CIEEL (Chemically Initiated Electron Exchange Luminescence) mechanism; (iii) 1,2-dioxetane decomposition catalyzed by an intramolecular electron transfer mechanism (intramolecular CIEEL). Special emphasis is given to the latter subject, where recent examples with potential analytical applications are presented.