996 resultados para hydrodynamic characterization
Resumo:
Preparation of Rb-beta -alumina was realized by the gel-to-crystallite conversion method. Reaction of hydrated aluminum hydroxide gel with RbOH in ethanol medium gave rise to the Rb+-inserted pseudoboehmite precursor under wet chemical conditions. The thermal decomposition of the precursor yielded Rb-beta -alumina. The Rb2O:Al2O3 ratio of monophasic Rb-beta -alumina ranged from 1:10 to 1:22. The extended stability in the compositional range is due to the fact that the conduction planes containing Rb+ and O2- ions can have lower occupancy of Rb+ ions for larger sized alkali ions, permitting the steric separation of the adjoining spinel blocks. High-resolution electron microscopy revealed that the decreasing occupancy of alkali ions in the conduction plane is balanced by changing widths of spinel blocks arising from the shift of tetrahedral Al3+ ions to octahedral sites and an accompanying increase in stacking defects. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Highly uniform, stable nanobimetallic dispersions are prepared in a single si ep in the form of sols, gels, and monoliths, using organically modified silicates as the matrix and the stabilizer. The Pt-Pd bimetallic dispersions are characterized by W-vis, TEM, SEM, and XRD measurements. The evolution of silicate was followed by IR spectroscopy. XPS and CO adsorption studies reveal that the structure of the particles consists of a palladium core and a platinum shell. Electrocatalysis of ascorbic acid oxidation has been demonstrated using thin films of silicate containing the nanobimetal particles on a glassy carbon electrode.
Resumo:
A compact, high brightness 13.56 MHz inductively coupled plasma ion source without any axial or radial multicusp magnetic fields is designed for the production of a focused ion beam. Argon ion current of density more than 30 mA/cm(2) at 4 kV potential is extracted from this ion source and is characterized by measuring the ion energy spread and brightness. Ion energy spread is measured by a variable-focusing retarding field energy analyzer that minimizes the errors due t divergence of ion beam inside the analyzer. Brightness of the ion beam is determined from the emittance measured by a fully automated and locally developed electrostatic sweep scanner. By optimizing various ion source parameters such as RF power, gas pressure and Faraday shield, ion beams with energy spread of less than 5 eV and brightness of 7100 Am(-2)sr(-1)eV(-1) have been produced. Here, we briefly report the details of the ion source, measurement and optimization of energy spread and brightness of the ion beam. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Polyphosphate esters were synthesized by the solution polycondensation of bisphenols with aryl phosphorodichloridates. The polymers were characterized by i.r. and 1H, 13C and 31P n.m.r. spectroscopy. The molecular weights were determined by end group analysis using 1H and 31P n.m.r. spectral data. The thermal stability of the polymers was analysed by thermogravimetry.
Resumo:
Polyphosphate esters based on bisphenol A and alkyl phosphorodichloridates have been synthesized and characterized by i.r. and n.m.r. spectroscopy. The molecular weights were calculated from 31P n.m.r. The thermal stability of the polymers were analysed by thermogravimetry.
Resumo:
A number of simple and complex hydrazinium derivatives have been prepared by the reaction of hydrazine hydrate with ammonium salts. The products were characterized by chemical analysis and infrared spectra.
Resumo:
Silicon strip detectors are fast, cost-effective and have an excellent spatial resolution. They are widely used in many high-energy physics experiments. Modern high energy physics experiments impose harsh operation conditions on the detectors, e.g., of LHC experiments. The high radiation doses cause the detectors to eventually fail as a result of excessive radiation damage. This has led to a need to study radiation tolerance using various techniques. At the same time, a need to operate sensors approaching the end their lifetimes has arisen. The goal of this work is to demonstrate that novel detectors can survive the environment that is foreseen for future high-energy physics experiments. To reach this goal, measurement apparatuses are built. The devices are then used to measure the properties of irradiated detectors. The measurement data are analyzed, and conclusions are drawn. Three measurement apparatuses built as a part of this work are described: two telescopes measuring the tracks of the beam of a particle accelerator and one telescope measuring the tracks of cosmic particles. The telescopes comprise layers of reference detectors providing the reference track, slots for the devices under test, the supporting mechanics, electronics, software, and the trigger system. All three devices work. The differences between these devices are discussed. The reconstruction of the reference tracks and analysis of the device under test are presented. Traditionally, silicon detectors have produced a very clear response to the particles being measured. In the case of detectors nearing the end of their lifefimes, this is no longer true. A new method benefitting from the reference tracks to form clusters is presented. The method provides less biased results compared to the traditional analysis, especially when studying the response of heavily irradiated detectors. Means to avoid false results in demonstrating the particle-finding capabilities of a detector are also discussed. The devices and analysis methods are primarily used to study strip detectors made of Magnetic Czochralski silicon. The detectors studied were irradiated to various fluences prior to measurement. The results show that Magnetic Czochralski silicon has a good radiation tolerance and is suitable for future high-energy physics experiments.
Resumo:
The phosphate-inhibitable neutral protease activity of the heavy mitochondrial fraction of rat liver is of lysosomal origin. The activity is essentially due to the thiol proteinases of the lysosomes. Digitonin treatment of the mitochondrial fraction results in the release of about 85 per cent of the neutral protease activity and the residual activity has an alkaline pH optimum and is not inhibited by phosphate. Clofibrate feeding at 0.5 per cent level in the diet results in enhanced levels of lysosomal enzymes. The increase is however restricted to the lysosome-rich fraction such that the activities associated with the heavy mitochondrial fraction show a significant decrease. It is suggested that clofibrate inhibits engulfment of mitochondria by lysosomes and this results in enhanced mitochondrial protein content.
Resumo:
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (ICFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (K-D similar to 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access In recent years, IGFBPs have been implicated in a variety of cancers However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Eschericha coli Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E coli and first structural characterization of a full-length IGFBP (C) 2010 Elsevier Inc. All rights reserved
Resumo:
La2CoO4+? (? reverse similar, equals 0.1) possessing the K2NiF4 structure has been prepared by skull melting as well as the ceramic method. Evidence for antiferromagnetic ordering has been found in these samples. Stoichiometric La2CoO4 prepared by the reduction of the oxygen excess samples was partially characterized.
Resumo:
A .beta.-glucosidase and an endocellulase were purified from the culture filtrates of a thermophilic cellulolytic fungus Humicola insolens. Both the preparations were homogeneous by PAGE, ultracentrifugation and gel filtration (Mr 45,000). Ouchterlony immunodiffusion showed complete cross reactivity between the antibodies and the two enzyme antigens, indicating the presence of a common epitope on the two enzyme proteins. The two enzymes, however, differ in their amino acid composition and their substrate specificity. .beta.-Glucosidase acts on p-nitrophenyl .beta.-D-glucopyranoside and hydrolyses cellulose to release mainly glucose and small amounts of cellobiose from the non-reducing end. On the other hand, endocellulase hydrolyses cellulose to release cellopentaose, cellotetraose, cellotriose along with cellobiose and glucose and also hydrolyses larch wood xylan.
Resumo:
Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.