905 resultados para histone deacetylase 9 gene
Resumo:
The Bola-DRB3 gene participates in the development of the immune response and is highly polymorphic. For these reasons, it has been a candidate gene in studies of the genetic basis of disease resistance and in population genetic analysis. South American native cattle breeds have been widely replaced by improved exotic breeds leading to a loss of genetic resources. In particular South American native breeds have high levels of fertility and disease resistance. This work describes genetic variability in the BoLA-DRB3 gene in native (Caracu, Pantaneiro, Argentinean Creole) and exotic (Holstein, Jersey, Nelore, Gir) cattle breeds in Brazil and Argentina. PCR-RFLP alleles were identified by combining the restriction patterns for the BoLA-DRB3.2 locus obtained with RsaI, BstY, and HaeIII restriction enzymes. Allelic frequencies and deviations from the Hardy-Weinberg equilibrium were also calculated. Analysis of the 24 BoLA-DRB3 PCR-RFLP alleles identified showed differences in the allele distributions among breeds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Evaluation of TFAM and FABP4 gene polymorphisms in three lines of Nellore cattle selected for growth
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The human ZC3H14 gene encodes an evolutionarily conserved Cys(3)His zinc finger protein that binds specifically to polyadenosine RNA and is thus postulated to modulate post-transcriptional gene expression. Expressed sequence tag (EST) data predicts multiple splice variants of both human and mouse ZC3H14. Analysis of ZC3H14 expression in both human cell lines and mouse tissues confirms the presence of multiple alternatively spliced transcripts. Although all of these transcripts encode protein isoforms that contain the conserved C-terminal zinc finger domain, suggesting that they could all bind to polyadenosine RNA, they differ in other functionally important domains. Most of the alternative transcripts encode closely related proteins (termed isoforms 1, 2. 3, and 3short) that differ primarily in the inclusion of three small exons, 9, 10, and 11, resulting in predicted protein isoforms ranging from 82 to 64 kDa. Each of these closely related isoforms contains predicted classical nuclear localization signals (cNLS) within exons 7 and 11. Consistent with the presence of these putative nuclear targeting signals, these ZC3H14 isoforms are all localized to the nucleus. In contrast, an additional transcript encodes a smaller protein (34 kDa) with an alternative first exon (isoform, 4). Consistent with the absence of the predicted cNLS motifs located in exons 7 and 11, ZC3H14 isoform 4 is localized to the cytoplasm. Both EST data and experimental data suggest that this variant is enriched in testes and brain. Using an antibody that detects endogenous ZC3H14 isoforms 1-3 reveals localization of these isoforms to nuclear speckles. These speckles co-localize with the splicing factor, SC35, suggesting a role for nuclear ZC3H14 in mRNA processing. Taken together, these results demonstrate that multiple transcripts encoding several ZC3H14 isoforms exist in vivo. Both nuclear and cytoplasmic ZC3H14 isoforms could have distinct effects on gene expression mediated by the common Cys(3)His zinc finger polyadenosine RNA binding domain. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Haplotypes linked to the βS gene represent patterns of DNA polymorphisms along chromosome 11 of individuals bearing the βS gene. Analysis of haplotypes, in addition to serving as an important source for anthropological studies about the ethnic origin of a population, contributes to a better understanding of the variations in clinical severity of sickle cell anemia. The aim of the present study was to determine βS gene haplotypes in a group of patients with sickle cell anemia treated at the Dalton Barbosa Cunha Hematology Center (Hemonorte) in Natal, Brazil and the Oncology and Hematology Center in Mossoró, Brazil. Blood samples were obtained from 53 non-related patients (27 males and 26 females), aged between 3 months and 61 years (mean age: 16.9 ± 12.1 years). Laboratory analyses consisted of the following: erythrogram, reticulocyte count, hemoglobin electrophoresis at alkaline pH, measurement of hemoglobin A2 and Fetal hemoglobin, solubility test and molecular analysis to determine βS gene haplotypes. DNA samples were extracted by illustra blood genomicPrep Mini Spin kit and βS gene haplotypes were determined by PCR-RFLP, using Xmn I, Hind III, Hinc II and Hinf I restriction enzymes for analysis of six polymorphic restriction sites in the beta cluster. Of 106 βS chromosomes studied, 75.5% were Central African Republic (CAR) haplotype, 11.3% Benin (BEN) and 6.6% Cameroon (CAM). The atypical haplotypes had a frequency of 6.6%. More than half the patients (58.5%) were identified as CAR/CAR genotype carriers, 16.9% heterozygous CAR/BEN, 13.2% CAR/CAM and 1.9% BEN/BEN. Patients with atypical haplotype in one or two chromosomes accounted for 9.5% (CAR/Atp, BEN/Atp and Atp/Atp). The genotype groups showed no statistically significant difference (p < 0.05) in their laboratory parameters. This is the first study related to βS haplotypes conducted in state of Rio Grande do Norte and the higher frequency of Cameroon halotype found, compared to other Brazilian states, suggests the existence of a peculiarity of African origin
Resumo:
While it has been clearly demonstrated that smoking is the most significant exogenous factor involved in oral carcinogenesis, little is known about the global molecular and cellular changes that occur prior to the appearance of clinically detectable symptoms. Thus, the aim of this study was to investigate the expressivity of bcl-2, bax and PCNA in the rat tongue mucosa exposed to cigarette smoke by means of immunohistochemistry. A total of twelve male Wistar rats were distributed into 2 groups: negative control and experimental group exposed to cigarette smoke during 75 days. After experimental period, no histopathological changes in the tongue mucosa were detected in the negative control and the experimental group. on the other hand, an overexpression of bcl-2 was detected (p < 0.01) throughout all layers of the epithelium, whereas bax did not show significant differences (p > 0.05). Also, the labeling index for bcl-2 and bax showed an increase 75 days after cigarette exposure (p < 0.01). PCNA-labeling index did not show remarkable changes between groups. Taken together, our results show that bcl-2 is overexpressed in the rat tongue keratinocytes after cigarette smoke exposure.
Resumo:
The aim of the present study was to examine the impact of polymorphisms in prostate-specific antigen (PSA) and androgen-related genes (AR, CYP17, and CYP19) on prostate cancer (PCa) risk in selected high-risk patients who underwent prostate biopsy. Blood samples and prostate tissues were obtained for DNA analysis. Single-nucleotide polymorphisms in the 50-untranslated regions (UTRs) of the PSA (substitution A > G at position -158) and CYP17 (substitution T > C at 50-UTR) genes were detected by polymerase chain reaction (PCR)-restriction fragment length polymorphism assays. The CAG and TTTA repeats in the AR and CYP19 genes, respectively, were genotyped by PCR-based GeneScan analysis. Patients with the GG genotype of the PSA gene had a higher risk of PCa than those with the AG or AA genotype (OR = 3.79, p = 0.00138). The AA genotype was associated with lower PSA levels (6.44 +/- 1.64 ng/mL) compared with genotypes having at least one G allele (10.44 +/- 10.06 ng/mL) (p = 0.0687, 95% CI - 0.3146 to 8.315, unpaired t-test). The multivariate analysis confirmed the association between PSA levels and PSA genotypes (AA vs. AG+GG; chi(2) = 0.0482) and CYP19 (short alleles homozygous vs. at least one long allele; chi(2) = 0.0110) genotypes. Genetic instability at the AR locus leading to somatic mosaicism was detected in one PCa patient by comparing the length of AR CAG repeats in matched peripheral blood and prostate biopsy cores. Taken together, these findings suggest that the PSA genotype should be a clinically relevant biomarker to predict the PCa risk.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective was to determine the relationship among the diameter of ovarian follicles, ovulation rate, and gene expression of the LH receptor (LHR) in Nelore cattle. In Experiment 1, ovulation was synchronized in 53 Nelore cows. Three days after ovulation, ovaries were assessed with ultrasonography, all cows were given 6.25 mg LH im, and they were allocated into three groups, according to diameter of their largest ovarian follicle: G1 (7.0-8.0 mm); G2 (8.1-9.0 mm); and G3 (9.1-10.0 mm). For these three groups, ovulation rates were 9, 36, and 90%, respectively, (P < 0.03; each rate differed significantly from the other two). In Experiment 2, granulosa and theca cells were subjected to total RNA extraction, and gene expression of the LHR was determined by RT-PCR. Follicles were allocated in three groups based on their diameter (similar to the Experiment 1), which were denoted Groups A, B, and C. Expression of the LHR gene in granulosa cells was lower in Group A than Group C (P < 0.05). However, there were no significant differences among groups in expression of the LHR gene in theca cells. We concluded that ovulatory capacity in Nelore cattle was related to increased follicular diameter and expression of the LHR gene in granulosa cells. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Natural luteolysis involves multiple pulses of prostaglandin F2alpha (PGF) released by the nonpregnant uterus. This study investigated expression of 18 genes from five distinct pathways, following multiple low-dose pulses of PGF. Cows on Day 9 of the estrous cycle received four intrauterine infusions of 0.25 ml of phosphate-buffered saline (PBS) or PGF (0.5 mg of PGF in 0.25 ml of PBS) at 6-h intervals. A luteal biopsy sample was collected 30 min after each PBS or PGF infusion. There were four treatment groups: Control (n = 5; 4 PBS infusions), 4XPGF (4 PGF infusions; n = 5), 2XPGF-non-regressed (2 PGF infusions; n = 5; PGF-PBS-PGF-PBS; no regression after treatments), and 2XPGF-regressed (PGF-PBS-PGF-PBS; regression after treatments; n = 5). As expected, the first PGF pulse increased mRNA for the immediate early genes JUN, FOS, NR4A1, and EGR1 but unexpectedly also increased mRNA for steroidogenic (STAR) and angiogenic (VEGFA) pathways. The second PGF pulse induced immediate early genes and genes related to immune system activation (IL1B, FAS, FASLG, IL8). However, mRNA for VEGFA and STAR were decreased by the second PGF infusion. After the third and fourth PGF pulses, a distinctly luteolytic pattern of gene expression was evident, with inhibition of steroidogenic and angiogenic pathways, whereas, there was induction of pathways for immune system activation and production of PGF. The pattern of PGF-induced gene expression was similar in corpus luteum not destined for luteolysis (2X-non-regressed) after the first PGF pulse but was very distinct after the second PGF pulse. Thus, although the initial PGF pulse induced mRNA for many pathways, the second and later pulses of PGF appear to have set the distinct pattern of gene expression that result in luteolysis.
Resumo:
Platelet-derived growth factor-BB (PDGF-BB) stimulates repair of healing-impaired chronic wounds such as diabetic ulcers and periodontal lesions. However, limitations in predictability of tissue regeneration occur due, in part, to transient growth factor bioavailability in vivo. Here, we report that gene delivery of PDGF-B stimulates repair of oral implant extraction socket defects. Alveolar ridge defects were created in rats and were treated at the time of titanium implant installation with a collagen matrix containing an adenoviral (Ad) vector encoding PDGF-B (5.5 x 10(8) or 5.5 x 10(9) pfu ml (1)), Ad encoding luciferase (Ad-Luc; 5.5 x 10(9) pfu ml (1); control) or recombinant human PDGF-BB protein (rhPDGF-BB, 0.3 mg ml (1)). Bone repair and osseointegration were measured through backscattered scanning electron microscopy, histomorphometry, microcomputed tomography and biomechanical assessments. Furthermore, a panel of local and systemic safety assessments was performed. Results indicated that bone repair was accelerated by Ad-PDGF-B and rhPDGF-BB delivery compared with Ad-Luc, with the high dose of Ad-PDGF-B more effective than the low dose. No significant dissemination of the vector construct or alteration of systemic parameters was noted. In summary, gene delivery of Ad-PDGF-B shows regenerative and safety capabilities for bone tissue engineering and osseointegration in alveolar bone defects comparable with rhPDGF-BB protein delivery in vivo. Gene Therapy (2010) 17, 95-104; doi: 10.1038/gt.2009.117; published online 10 September 2009
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)