806 resultados para fractal
Resumo:
The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm
Resumo:
The characteristic properties of the fractal geometry have shown to be very useful for the construction of filters, frequency selective surfaces, synchronized circuits and antennas, enabling optimized solutions in many different commercial uses at microwaves frequency band. The fractal geometry is included in the technology of the microwave communication systems due to some interesting properties to the fabrication of compact devices, with higher performance in terms of bandwidth, as well as multiband behavior. This work describes the design, fabrication and measurement procedures for the Koch quasi-fractal monopoles, with 1 and 2 iteration levels, in order to investigate the bandwidth behavior of planar antennas, from the use of quasi-fractal elements printed on their rectangular patches. The electromagnetic effect produced by the variation of the fractal iterations and the miniaturization of the structures is analyzed. Moreover, a parametric study is performed to verify the bandwidth behavior, not only at the return loss but also in terms of SWR. Experimental results were obtained through the accomplishment of measurements with the aid of a vetorial network analyzer and compared to simulations performed using the Ansoft HFSS software. Finally, some proposals for future works are presented
Resumo:
In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements
Resumo:
This thesis describes design methodologies for frequency selective surfaces (FSSs) composed of periodic arrays of pre-fractals metallic patches on single-layer dielectrics (FR4, RT/duroid). Shapes presented by Sierpinski island and T fractal geometries are exploited to the simple design of efficient band-stop spatial filters with applications in the range of microwaves. Initial results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as, fractal iteration number (or fractal level), fractal iteration factor, and periodicity of FSS, depending on the used pre-fractal element (Sierpinski island or T fractal). The transmission properties of these proposed periodic arrays are investigated through simulations performed by Ansoft DesignerTM and Ansoft HFSSTM commercial softwares that run full-wave methods. To validate the employed methodology, FSS prototypes are selected for fabrication and measurement. The obtained results point to interesting features for FSS spatial filters: compactness, with high values of frequency compression factor; as well as stable frequency responses at oblique incidence of plane waves. This thesis also approaches, as it main focus, the application of an alternative electromagnetic (EM) optimization technique for analysis and synthesis of FSSs with fractal motifs. In application examples of this technique, Vicsek and Sierpinski pre-fractal elements are used in the optimal design of FSS structures. Based on computational intelligence tools, the proposed technique overcomes the high computational cost associated to the full-wave parametric analyzes. To this end, fast and accurate multilayer perceptron (MLP) neural network models are developed using different parameters as design input variables. These neural network models aim to calculate the cost function in the iterations of population-based search algorithms. Continuous genetic algorithm (GA), particle swarm optimization (PSO), and bees algorithm (BA) are used for FSSs optimization with specific resonant frequency and bandwidth. The performance of these algorithms is compared in terms of computational cost and numerical convergence. Consistent results can be verified by the excellent agreement obtained between simulations and measurements related to FSS prototypes built with a given fractal iteration
Resumo:
This work aims to present how the application of fractal geometry to the elements of a log-periodic array can become a good alternative when one wants to reduce the size of the array. Two types of log-periodic arrays were proposed: one with fed by microstrip line and other fed by electromagnetic coupling. To the elements of these arrays were applied fractal Koch contours, at two levels. In order to validate the results obtained some prototypes were built, which were measured on a vector network analyzer and simulated in a software, for comparison. The results presented reductions of 60% in the total area of the arrays, for both types. By analyzing the graphs of return loss, it was observed that the application of fractal contours made different resonant frequencies appear in the arrays. Furthermore, a good agreement was observed between simulated and measured results. The array with feeding by electromagnetic coupling presented, after application of fractal contours, radiation pattern with more smooth forms than the array with feeding by microstrip line
Resumo:
This work presents the analysis of an antenna of fractal microstrip of Koch with dielectric multilayers and inclinations in the ground plane, whose values of the angles are zero degree (without inclinations), three, seven and twelve degrees. This antenna consists of three dielectric layers arranged vertically on each other, using feeding microstrip line in patch 1, of the first layer, which will feed the remaining patches of the upper layers by electromagnetic coupling. The objective of this work is to analyze the effects caused by increase of the angle of inclination of the ground plane in some antenna parameters such as return loss, resonant frequency, bandwidth and radiation pattern. The presented results demonstrate that with the increase of the inclination angle it is possible to get antennas with characteristics multiband, with bigger bandwidth, and improving the impedance matching for each case analyzed, especially the larger angle
Resumo:
Microstrip antennas are subject matter in several research fields due to its numerous advantages. The discovery, at 1999, of a new class of materials called metamaterials - usually composed of metallic elements immersed in a dielectric medium, have attracted the attention of the scientific community, due to its electromagnetic properties, especially the ability to use in planar structures, such as microstrip, without interfering with their traditional geometry. The aim of this paper is to analyze the effects of one and bidimensional metamaterial substrates in microstrip antennas, with different configurations of resonance rings, SRR, in the dielectric layer. Fractal geometry is applied to these rings, in seeking to verify a multiband behavior and to reduce the resonance frequency of the antennas. The results are then given by commercial software Ansoft HFSS, used for precise analysis of the electromagnetic behavior of antennas by Finite Element Method (FEM). To reach it, this essay will first perform a literature study on fractal geometry and its generative process. This paper also presents an analysis of microstrip antennas, with emphasis on addressing different types of substrates as part of its electric and magnetic anisotropic behavior. It s performed too an approach on metamaterials and their unique properties
Resumo:
This work aims to investigate the behavior of fractal elements in planar microstrip structures. In particular, microstrip antennas and frequency selective surfaces (FSSs) had changed its conventional elements to fractal shapes. For microstrip antennas, was used as the radiating element of Minkowski fractal. The feeding method used was microstrip line. Some prototypes were built and the analysis revealed the possibility of miniaturization of structures, besides the multiband behavior, provided by the fractal element. In particular, the Minkowski fractal antenna level 3 was used to exploit the multiband feature, enabling simultaneous operation of two commercial tracks (Wi-Fi and WiMAX) regulated by ANATEL. After, we investigated the effect of switches that have been placed on the at the pre-fractal edges of radiating element. For the FSSs, the fractal used to elements of FSSs was Dürer s pentagon. Some prototypes were built and measured. The results showed a multiband behavior of the structure provided by fractal geometry. Then, a parametric analysis allowed the analysis of the variation of periodicity on the electromagnetic behavior of FSS, and its bandwidth and quality factor. For numerical and experimental characterization of the structures discussed was used, respectively, the commercial software Ansoft DesignerTM and a vector network analyzer, Agilent N5230A model
Resumo:
O artigo trabalha a noção de amizade em Foucault como um modo de vida que se opõe ao processo de normalização empreendido pelo biopoder. Inicia com uma caracterização acerca do Estado Moderno. Logo após, aborda a historicidade dos processos de subjetivação e de como a atitude frente a estes implica estados de maior autonomia ou sujeição. em seguida, aborda a amizade como resistência à normalização, situando-a em relação ao prazer e à sexualidade. Por fim, discute o papel da filosofia no processo de constituição da amizade, particularmente quanto à possibilidade de pensá-la por meio de uma teoria das relações.
Resumo:
Este artigo destina-se ao estudo das análises que o filósofo Maurice Merleau-Ponty dedica ao tema da linguagem no livro Fenomenologia da percepção. O filósofo parte da discussão de pesquisas relativas à psicopatologia da linguagem. Nelas, afirma-se que os doentes estariam limitados a uma atitude concreta e, portanto, impedidos de efetuar as formas do comportamento simbólico. Merleau-Ponty adota uma postura crítica em relação à inspiração intelectualista que perpassa essa caracterização e estende suas críticas à psicologia genética de Piaget. É ao registro do gesto que o filósofo vincula a linguagem, enfatizando o seu caráter intencional.
Resumo:
Neste trabalho, através de simulações computacionais, identificamos os fenômenos físicos associados ao crescimento e a dinâmica de polímeros como sistemas complexos exibindo comportamentos não linearidades, caos, criticalidade auto-organizada, entre outros. No primeiro capítulo, iniciamos com uma breve introdução onde descrevemos alguns conceitos básicos importantes ao entendimento do nosso trabalho. O capítulo 2 consiste na descrição do nosso estudo da distribuição de segmentos num polímero ramificado. Baseado em cálculos semelhantes aos usados em cadeias poliméricas lineares, utilizamos o modelo de crescimento para polímeros ramificados (Branched Polymer Growth Model - BPGM) proposto por Lucena et al., e analisamos a distribuição de probabilidade dos monômeros num polímero ramificado em 2 dimensões, até então desconhecida. No capítulo seguinte estudamos a classe de universalidade dos polímeros ramificados gerados pelo BPGM. Utilizando simulações computacionais em 3 dimensões do modelo proposto por Lucena et al., calculamos algumas dimensões críticas (dimensões fractal, mínima e química) para tentar elucidar a questão da classe de universalidade. Ainda neste Capítulo, descrevemos um novo modelo para a simulação de polímeros ramificados que foi por nós desenvolvido de modo a poupar esforço computacional. Em seguida, no capítulo 4 estudamos o comportamento caótico do crescimento de polímeros gerados pelo BPGM. Partimos de polímeros criticamente organizados e utilizamos uma técnica muito semelhante aquela usada em transições de fase em Modelos de Ising para estudar propagação de danos chamada de Distância de Hamming. Vimos que a distância de Hamming para o caso dos polímeros ramificados se comporta como uma lei de potência, indicando um caráter não-extensivo na dinâmica de crescimento. No Capítulo 5 analisamos o movimento molecular de cadeias poliméricas na presença de obstáculos e de gradientes de potenciais. Usamos um modelo generalizado de reptação para estudar a difusão de polímeros lineares em meios desordenados. Investigamos a evolução temporal destas cadeias em redes quadradas e medimos os tempos característicos de transporte t. Finalizamos esta dissertação com um capítulo contendo a conclusão geral denoss o trabalho (Capítulo 6), mais dois apêndices (Apêndices A e B) contendo a fenomenologia básica para alguns conceitos que utilizaremos ao longo desta tese (Fractais e Percolação respectivamente) e um terceiro e ´ultimo apêndice (Apêndice C) contendo uma descrição de um programa de computador para simular o crescimentos de polímeros ramificados em uma rede quadrada
Resumo:
In this thesis we study some problems related to petroleum reservoirs using methods and concepts of Statistical Physics. The thesis could be divided percolation problem in random multifractal support motivated by its potential application in modelling oil reservoirs. We develped an heterogeneous and anisotropic grid that followin two parts. The first one introduce a study of the percolations a random multifractal distribution of its sites. After, we determine the percolation threshold for this grid, the fractal dimension of the percolating cluster and the critical exponents ß and v. In the second part, we propose an alternative systematic of modelling and simulating oil reservoirs. We introduce a statistical model based in a stochastic formulation do Darcy Law. In this model, the distribution of permeabilities is localy equivalent to the basic model of bond percolation
Resumo:
The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points
Resumo:
Systems whose spectra are fractals or multifractals have received a lot of attention in recent years. The complete understanding of the behavior of many physical properties of these systems is still far from being complete because of the complexity of such systems. Thus, new applications and new methods of study of their spectra have been proposed and consequently a light has been thrown on their properties, enabling a better understanding of these systems. We present in this work initially the basic and necessary theoretical framework regarding the calculation of energy spectrum of elementary excitations in some systems, especially in quasiperiodic ones. Later we show, by using the Schr¨odinger equation in tight-binding approximation, the results for the specific heat of electrons within the statistical mechanics of Boltzmann-Gibbs for one-dimensional quasiperiodic systems, growth by following the Fibonacci and Double Period rules. Structures of this type have already been exploited enough, however the use of non-extensive statistical mechanics proposed by Constantino Tsallis is well suited to systems that have a fractal profile, and therefore our main objective was to apply it to the calculation of thermodynamical quantities, by extending a little more the understanding of the properties of these systems. Accordingly, we calculate, analytical and numerically, the generalized specific heat of electrons in one-dimensional quasiperiodic systems (quasicrystals) generated by the Fibonacci and Double Period sequences. The electronic spectra were obtained by solving the Schr¨odinger equation in the tight-binding approach. Numerical results are presented for the two types of systems with different values of the parameter of nonextensivity q
Resumo:
The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points. In oil recovery terminology, the given single point can be mapped to an injection well (injector) and the multiple other points to production wells (producers). In the previously standard case of one injection well and one production well separated by Euclidean distance r, the distribution of shortest paths l, P(l|r), shows a power-law behavior with exponent gl = 2.14 in 2D. Here we analyze the situation of one injector and an array A of producers. Symmetric arrays of producers lead to one peak in the distribution P(l|A), the probability that the shortest path between the injector and any of the producers is l, while the asymmetric configurations lead to several peaks in the distribution. We analyze configurations in which the injector is outside and inside the set of producers. The peak in P(l|A) for the symmetric arrays decays faster than for the standard case. For very long paths all the studied arrays exhibit a power-law behavior with exponent g ∼= gl.