909 resultados para flow-based


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrated production scheduling and lot-sizing problem in a flow shop environment consists of establishing production lot sizes and allocating machines to process them within a planning horizon in a production line with machines arranged in series. The problem considers that demands must be met without backlogging, the capacity of the machines must be respected, and machine setups are sequence-dependent and preserved between periods of the planning horizon. The objective is to determine a production schedule to minimise the setup, production and inventory costs. A mathematical model from the literature is presented, as well as procedures for obtaining feasible solutions. However, some of the procedures have difficulty in obtaining feasible solutions for large-sized problem instances. In addition, we address the problem using different versions of the Asynchronous Team (A-Team) approach. The procedures were compared with literature heuristics based on Mixed Integer Programming. The proposed A-Team procedures outperformed the literature heuristics, especially for large instances. The developed methodologies and the results obtained are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of this work was to develop a simple analytical method for quantification of glycerol based on the electrocatalytic oxidation of glycerol on the copper surface adapted in a flow injection system. Under optimal experimental conditions, the peak current response increases linearly with glycerol concentration over the range 60-3200 mg kg(-1) (equivalent to 3-160 mg L(-1) in solution). The repeatability of the electrode response in the flow injection analysis (FIA) configuration was evaluated as 5% (n = 10), and the detection limit of the method was estimated to be 5 mg kg(-1) in biodiesel (equivalent to 250 mu g L(-1) in solution) (S/N = 3). The sample throughput under optimised conditions was estimated to be 90 h(-1). Different types of biodiesel samples (B100), as in the types of vegetable oils or animal fats used to produce the fuels, were analysed (seven samples). The only sample pre-treatment used was an extraction of glycerol from the biodiesel sample containing a ratio of 5 mL of water to 250 mg of biodiesel. The proposed method improves the analytical parameters obtained by other electroanalytical methods for quantification of glycerol in biodiesel samples, and its accuracy was evaluated using a spike-and-recovery assay, where all the biodiesel samples used obtained admissible values according to the Association of Official Analytical Chemists. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel production has received considerable attention in the recent past as a nonpolluting fuel. However, this assertion has been based on its biodegradability and reduction in exhaust emissions. Assessments of water and soil biodiesel pollution are still limited. Spill simulation with biodiesel and their diesel blends in soils were carried out, aiming at analyzing their cytotoxic and genotoxic potentials. While the cytotoxicity observed may be related to diesel contaminants, the genotoxic and mutagenic effects can be ascribed to biodiesel pollutants. Thus, taking into account that our data stressed harmful effects on organisms exposed to biodiesel-polluted soils, the designation of this biofuel as an environmental-friendly fuel should be carefully reviewed to assure environmental quality. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of the core-annular flow pattern, where a thin fluid surrounds a very viscous one, has been suggested as an attractive artificial-lift method for heavy oils in the current Brazilian ultra-deepwater production scenario. This paper reports the pressure drop measurements and the core-annular flow observed in a 2 7/8-inch and 300 meter deep pilot-scale well conveying a mixture of heavy crude oil (2000 mPa.s and 950 kg/m3 at 35 C) and water at several combinations of the individual flow rates. The two-phase pressure drop data are compared with those of single-phase oil flow to assess the gains due to water injection. Another issue is the handling of the core-annular flow once it has been established. High-frequency pressure-gradient signals were collected and a treatment based on the Gabor transform together with neural networks is proposed as a promising solution for monitoring and control. The preliminary results are encouraging. The pilot-scale tests, including long-term experiments, were conducted in order to investigate the applicability of using water to transport heavy oils in actual wells. It represents an important step towards the full scale application of the proposed artificial-lift technology. The registered improvements in terms of oil production rate and pressure drop reductions are remarkable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the numerical solution of complex fluid dynamics problems using a new bounded high resolution upwind scheme (called SDPUS-C1 henceforth), for convection term discretization. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite volume/difference methodologies, either into the CLAWPACK software package for compressible flows or in the Freeflow simulation system for incompressible viscous flows. The performance of the proposed upwind non-oscillatory scheme is demonstrated by solving two-dimensional compressible flow problems, such as shock wave propagation and two-dimensional/axisymmetric incompressible moving free surface flows. The numerical results demonstrate that this new cell-interface reconstruction technique works very well in several practical applications. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras-ZF2-02 degrees 36'17.1 '' S, 60 degrees 12'24.4 '' W), subcanopy horizontal and vertical gradients of the air temperature, CO2 concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tota et al. (2008) was used with a network of wind, air temperature, and CO2 sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The microcirculations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e. g., CO2) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO2 into those estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this manuscript, an automatic setup for screening of microcystins in surface waters by employing photometric detection is described. Microcystins are toxins delivered by cyanobacteria within an aquatic environment, which have been considered strongly poisonous for humans. For that reason, the World Health Organization (WHO) has proposed a provisional guideline value for drinking water of 1 mu g L-1. In this work, we developed an automated equipment setup, which allows the screening of water for concentration of microcystins below 0.1 mu g V. The photometric method was based on the enzyme-linked immunosorbent assay (ELISA) and the analytical signal was monitored at 458 nm using a homemade LED-based photometer. The proposed system was employed for the detection of microcystins in rivers and lakes waters. Accuracy was assessed by processing samples using a reference method and applying the paired t-test between results. No significant difference at the 95% confidence level was observed. Other useful features including a linear response ranging from 0.05 up to 2.00 mu g L-1 (R-2 =0.999) and a detection limit of 0.03 mu g L-1 microcystins were achieved. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Field-Programmable Gate Arrays (FPGAs) are becoming increasingly important in embedded and high-performance computing systems. They allow performance levels close to the ones obtained with Application-Specific Integrated Circuits, while still keeping design and implementation flexibility. However, to efficiently program FPGAs, one needs the expertise of hardware developers in order to master hardware description languages (HDLs) such as VHDL or Verilog. Attempts to furnish a high-level compilation flow (e.g., from C programs) still have to address open issues before broader efficient results can be obtained. Bearing in mind an FPGA available resources, it has been developed LALP (Language for Aggressive Loop Pipelining), a novel language to program FPGA-based accelerators, and its compilation framework, including mapping capabilities. The main ideas behind LALP are to provide a higher abstraction level than HDLs, to exploit the intrinsic parallelism of hardware resources, and to allow the programmer to control execution stages whenever the compiler techniques are unable to generate efficient implementations. Those features are particularly useful to implement loop pipelining, a well regarded technique used to accelerate computations in several application domains. This paper describes LALP, and shows how it can be used to achieve high-performance computing solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental study on drag-reduction phenomenon in dispersed oil-water flow has been performed in a 26-mm-i.d. Twelve meter long horizontal glass pipe. The flow was characterized using a novel wire-mesh sensor based on capacitance measurements and high-speed video recording. New two-phase pressure gradient, volume fraction, and phase distribution data have been used in the analysis. Drag reduction and slip ratio were detected at oil volume fractions between 10 and 45% and high mixture Reynolds numbers, and with water as the dominant phase. Phase-fraction distribution diagrams and cross-sectional imaging of the flow suggested the presence of a higher amount of water near to the pipe wall. Based on that, a phenomenology for explaining drag reduction in dispersed flow in a flow situation where slip ratio is significant is proposed. A simple phenomenological model is developed and the agreement between model predictions and data, including data from the literature, is encouraging. (c) 2011 American Institute of Chemical Engineers AIChE J, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Accurate malaria diagnosis is mandatory for the treatment and management of severe cases. Moreover, individuals with asymptomatic malaria are not usually screened by health care facilities, which further complicates disease control efforts. The present study compared the performances of a malaria rapid diagnosis test (RDT), the thick blood smear method and nested PCR for the diagnosis of symptomatic malaria in the Brazilian Amazon. In addition, an innovative computational approach was tested for the diagnosis of asymptomatic malaria. Methods The study was divided in two parts. For the first part, passive case detection was performed in 311 individuals with malaria-related symptoms from a recently urbanized community in the Brazilian Amazon. A cross-sectional investigation compared the diagnostic performance of the RDT Optimal-IT, nested PCR and light microscopy. The second part of the study involved active case detection of asymptomatic malaria in 380 individuals from riverine communities in Rondônia, Brazil. The performances of microscopy, nested PCR and an expert computational system based on artificial neural networks (MalDANN) using epidemiological data were compared. Results Nested PCR was shown to be the gold standard for diagnosis of both symptomatic and asymptomatic malaria because it detected the major number of cases and presented the maximum specificity. Surprisingly, the RDT was superior to microscopy in the diagnosis of cases with low parasitaemia. Nevertheless, RDT could not discriminate the Plasmodium species in 12 cases of mixed infections (Plasmodium vivax + Plasmodium falciparum). Moreover, the microscopy presented low performance in the detection of asymptomatic cases (61.25% of correct diagnoses). The MalDANN system using epidemiological data was worse that the light microscopy (56% of correct diagnoses). However, when information regarding plasma levels of interleukin-10 and interferon-gamma were inputted, the MalDANN performance sensibly increased (80% correct diagnoses). Conclusions An RDT for malaria diagnosis may find a promising use in the Brazilian Amazon integrating a rational diagnostic approach. Despite the low performance of the MalDANN test using solely epidemiological data, an approach based on neural networks may be feasible in cases where simpler methods for discriminating individuals below and above threshold cytokine levels are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variable rate sprinklers (VRS) have been developed to promote localized water application of irrigated areas. In Precision Irrigation, VRS permits better control of flow adjustment and, at the same time, provides satisfactory radial distribution profiles for various pressures and flow rates are really necessary. The objective of this work was to evaluate the performance and radial distribution profiles of a developed VRS which varies the nozzle cross sectional area by moving a pin in or out using a stepper motor. Field tests were performed under different conditions of service pressure, rotation angles imposed on the pin and flow rate which resulted in maximal water throw radiuses ranging from 7.30 to 10.38 m. In the experiments in which the service pressure remained constant, the maximal throw radius varied from 7.96 to 8.91 m. Averages were used of repetitions performed under conditions without wind or with winds less than 1.3 m s-1. The VRS with the four stream deflector resulted in greater water application throw radius compared to the six stream deflector. However, the six stream deflector had greater precipitation intensities, as well as better distribution. Thus, selection of the deflector to be utilized should be based on project requirements, respecting the difference in the obtained results. With a small opening of the nozzle, the VRS produced small water droplets that visually presented applicability for foliar chemigation. Regarding the comparison between the estimated and observed flow rates, the stepper motor produced excellent results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to compare the techniques of indirect immunofluorescence assay (IFA) and flow cytometry to clinical and laboratorial evaluation of patients before and after clinical cure and to evaluate the applicability of flow cytometry in post-therapeutic monitoring of patients with American tegumentary leishmaniasis (ATL). Sera from 14 patients before treatment (BT), 13 patients 1 year after treatment (AT), 10 patients 2 and 5 years AT were evaluated. The results from flow cytometry were expressed as levels of IgG reactivity, based on the percentage of positive fluorescent parasites (PPFP). The 1:256 sample dilution allowed us to differentiate individuals BT and AT. Comparative analysis of IFA and flow cytometry by ROC (receiver operating characteristic curve) showed, respectively, AUC (area under curve) = 0.8 (95% CI = 0.64–0.89) and AUC = 0.90 (95% CI = 0.75–0.95), demonstrating that the flow cytometry had equivalent accuracy. Our data demonstrated that 20% was the best cut-off point identified by the ROC curve for the flow cytometry assay. This test showed a sensitivity of 86% and specificity of 77% while the IFA had a sensitivity of 78% and specificity of 85%. The after-treatment screening, through comparative analysis of the technique performance indexes, 1, 2 and 5 years AT, showed an equal performance of the flow cytometry compared with the IFA. However, flow cytometry shows to be a better diagnostic alternative when applied to the study of ATL in the cure criterion. The information obtained in this work opens perspectives to monitor cure after treatment of ATL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The accuracy and performance of current variational optical ow methods have considerably increased during the last years. The complexity of these techniques is high and enough care has to be taken for the implementation. The aim of this work is to present a comprehensible implementation of recent variational optical flow methods. We start with an energy model that relies on brightness and gradient constancy terms and a ow-based smoothness term. We minimize this energy model and derive an e cient implicit numerical scheme. In the experimental results, we evaluate the accuracy and performance of this implementation with the Middlebury benchmark database. We show that it is a competitive solution with respect to current methods in the literature. In order to increase the performance, we use a simple strategy to parallelize the execution on multi-core processors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] In this work we propose a new variational model for the consistent estimation of motion fields. The aim of this work is to develop appropriate spatio-temporal coherence models. In this sense, we propose two main contributions: a nonlinear flow constancy assumption, similar in spirit to the nonlinear brightness constancy assumption, which conveniently relates flow fields at different time instants; and a nonlinear temporal regularization scheme, which complements the spatial regularization and can cope with piecewise continuous motion fields. These contributions pose a congruent variational model since all the energy terms, except the spatial regularization, are based on nonlinear warpings of the flow field. This model is more general than its spatial counterpart, provides more accurate solutions and preserves the continuity of optical flows in time. In the experimental results, we show that the method attains better results and, in particular, it considerably improves the accuracy in the presence of large displacements.