940 resultados para femtosecond pulses
Resumo:
The second-harmonic generation (SHG) from Si1-xGex alloy films has been investigated by near-infrared femtosecond laser. Recognized by s-out polarized SHG intensity versus rotational angle of sample, the crystal symmetry of the fully strained Si0.83Ge0.17 alloy is found changed from the O-h to the C-2 point group due to the inhomogeneity of the strain. Calibrated by double crystal X-ray diffraction, the strain-induced chi((2)) is estimated at 5.7 x 10(-7) esu. According to the analysis on p-in/s-out SHG, the strain-relaxed Si0.10Ge0.90 alloy film is confirmed to be not fully relaxed, and the remaining strain is quantitatively determined to be around 0.1%.
Resumo:
The intensity-dependent two-photon absorption and nonlinear refraction coefficients of GaP optical crystal at 800 nm were measured with time-resolved femtosecond pump-probe technique. A nonlinear refraction coefficient of 1.7*10^(-17) m2/W and a two-photon absorption coefficient of 1.5*10^(-12) m/W of GaP crystal were obtained at a pump intensity of 3.5*10^(12) W/m2. The nonlinear refraction coefficient saturates at 3.5*10^(12) W/m2, while the two-photon absorption coefficient keeps linear increase at 6*10^(12) W/m2. Furthermore, fifth-order nonlinear refraction of the GaP optical crystal was revealed to occur above pump intensity of 3.5*10^(12) W/m2.
Resumo:
We present an efficient method to generate a ultrashort attosecond (as) pulse when a model He+ ion is exposed to the combination of an intense few-cycle chirped laser pulse and its 27th harmonics. By solving the time-dependent Schroumldinger equation, we found that high-order harmonic generation (HHG) from He+ ion is enhanced by seven orders of magnitude due to the presence of the harmonic pulse. After optimizing the chirp of the fundamental pulse, we show that the cut-off energy of the generated harmonics is extended effectively to I-p+25.5U(p). As a result, an isolated 26-as pulse with a bandwidth of 170.5 eV can be obtained directly from the supercontinuum around the cut-off of HHG. To better understand the physical origin of HHG enhancement and attosecond pulse emission, we perform semiclassical simulations and analyze the time-frequency characteristics of attosecond pulse.