992 resultados para driving simulation
Resumo:
Purpose Age-related changes in motion sensitivity have been found to relate to reductions in various indices of driving performance and safety. The aim of this study was to investigate the basis of this relationship in terms of determining which aspects of motion perception are most relevant to driving. Methods Participants included 61 regular drivers (age range 22–87 years). Visual performance was measured binocularly. Measures included visual acuity, contrast sensitivity and motion sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating. Participants then completed the Hazard Perception Test (HPT) in which they were required to identify moving hazards in videos of real driving scenes, and also a Direction of Heading task (DOH) in which they identified deviations from normal lane keeping in brief videos of driving filmed from the interior of a vehicle. Results In bivariate correlation analyses, all motion sensitivity measures significantly declined with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual differences in DOH accuracy partly explained these relationships, where those individuals with poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive deviations in motion in the driving videos, which related in turn to their ability to detect the moving hazards. Conclusions The ability to detect subtle movements in the driving environment (as determined by the DOH task) may be an important contributor to effective hazard perception, and is associated with age, and an individuals' performance on tests of motion sensitivity. The locus of the processing deficits appears to lie in first-order, rather than second-order motion pathways.
Resumo:
The impact of simulation methods for social research in the Information Systems (IS) research field remains low. A concern is our field is inadequately leveraging the unique strengths of simulation methods. Although this low impact is frequently attributed to methodological complexity, we offer an alternative explanation – the poor construction of research value. We argue a more intuitive value construction, better connected to the knowledge base, will facilitate increased value and broader appreciation. Meta-analysis of studies published in IS journals over the last decade evidences the low impact. To facilitate value construction, we synthesize four common types of simulation research contribution: Analyzer, Tester, Descriptor, and Theorizer. To illustrate, we employ the proposed typology to describe how each type of value is structured in simulation research and connect each type to instances from IS literature, thereby making these value types and their construction visible and readily accessible to the general IS community.
Resumo:
Increased focus on energy cost savings and carbon footprint reduction efforts improved the visibility of building energy simulation, which became a mandatory requirement of several building rating systems. Despite developments in building energy simulation algorithms and user interfaces, there are some major challenges associated with building energy simulation; an important one is the computational demands and processing time. In this paper, we analyze the opportunities and challenges associated with this topic while executing a set of 275 parametric energy models simultaneously in EnergyPlus using a High Performance Computing (HPC) cluster. Successful parallel computing implementation of building energy simulations will not only improve the time necessary to get the results and enable scenario development for different design considerations, but also might enable Dynamic-Building Information Modeling (BIM) integration and near real-time decision-making. This paper concludes with the discussions on future directions and opportunities associated with building energy modeling simulations.
Resumo:
Self-regulation is a coping strategy that allows older drivers to drive safely for longer. Self-regulation depends largely on the ability of drivers to evaluate their own driving. Therefore the success of self-regulation, in terms of driving safety, is influenced by the ability of older drivers to have insight into their declining driving performance. In addition, previous studies suggest that providing feedback to older adults regarding their driving skills may lead them to change their driving behaviour. However, little is currently known about the impact of feedback on older drivers’ self-awareness and their subsequent driving regulatory behaviour. This study explored the process of self-regulation and driving cessation among older drivers using the PAPM as a framework. It also investigated older adults’ perceptions and opinions about receiving feedback in regards to their driving abilities. Qualitative focus groups with 27 participants aged 70 years or more were conducted. Thematic analysis resulted in the development of five main themes; the meaning of driving, changes in driving pattern, feedback, the planning process, and solutions. The analysis also resulted in an initial model of driving self-regulation among older drivers that is informed by the current research and the Precaution Adoption Process Model as the theoretical framework. It identifies a number of social, personal, and environmental factors that can either facilitate or hinder people’s transition between stages of change. The findings from this study suggest that further elaboration of the PAPM is needed to take into account the role of insight and feedback on the process of self-regulation among older drivers.
Resumo:
Objective: Individuals with chronic whiplash-associated disorders (WADs) often note driving as a difficult task. This study’s aims were to (1) compare, while driving, neck motor performance, mental effort, and fatigue in individuals with chronic WAD against healthy controls and (2) investigate the relationships of these variables and neck pain to self-reported driving difficulty in the WAD group. Design: This study involved 14 participants in each group (WAD and control). Measures included self-reported driving difficulty and measures of neck pain intensity, overall fatigue, mental effort, and neck motor performance (head rotation and upper trapezius activity) while driving a simulator. Results: The WAD group had greater absolute path of head rotation in a simulated city area and used greater mental effort (P = 0.04), but there were no differences in other measures while driving compared with the controls (all P Q 0.05). Self-reported driving difficulty correlated moderately with neck pain intensity, fatigue level, and maximum velocity of head rotation while driving in the WAD group (all P G 0.05). Conclusions: Individuals with chronic WAD do not seem to have impaired neck motor performance while driving yet use greater mental effort. Neck pain, fatigue, and maximum head rotation velocity could be potential contributors to self-reported driving difficulty in this group.
Resumo:
This study investigates the effects of trait anxiety on self-reported driving behaviours through its negative impacts on Central Executive functions. Following a self-report study that found trait anxiety to be significantly related to driving behaviours, the present study extended the predictions of Eysenck and Calvo’s Attentional Control Theory, proposing that anxiety affects driving behaviours, in particular driving lapses, through its impact across the Central Executive. Seventy-five Australian drivers participated in the study, completing the Parametric Go/No-Go and n-back tasks, as well as the State-Trait Anxiety Inventory and the Driving Behaviour Questionnaire. While both trait anxiety and processing efficiency of the Central Executive was found to significantly predict driving lapses, trait anxiety remained a strong predictor of driving lapses after processing efficiency was controlled for. It is concluded that while processing efficiency of the central Executive is a key determinant of driving lapses, another Central Executive function that is closer to the driving lapses in the trait anxiety – driving lapses relationship may be needed. Suggestions regarding how to improve future trait anxiety – driving behaviours research are discussed.
Resumo:
Carbon fibre reinforced polymer (CFRP) strengthening of metallic structures under static loading has shown great potential in the recent years. However, steel structures are often experienced natural (e.g. earthquake, wind) as well as man-made (e.g. vehicular impact, blast) dynamic loading. Therefore, there is a growing interest among the researchers to investigate the capability of CFRP strengthened members under such dynamic conditions. This study focuses on the finite element (FE) numerical modelling and simulation of CFRP strengthened steel column under transverse impact loading to predict the behaviour and failure modes. Impact simulation process and the CFRP strengthened steel column are validated with the existing experimental results in literature. The validated FE model of CFRP strengthened steel column is then further used to investigate the effects of transverse impact loading on its structural performance. The results are presented in terms of transvers e impact force, lateral and axial displacement, and deformed shape to evaluate the effectiveness of CFRP strengthening technique. Comparisons between the bare steel and CFRP strengthened steel columns clearly indicate the performance enhancement of strengthened column under transverse impact loading.
Resumo:
A virtual power system can be interfaced with a physical system to form a power hardware-in-the-loop (PHIL) simulation. In this scheme, the virtual system can be simulated in a fast parallel processor to provide near real-time outputs, which then can be interfaced to a physical hardware that is called the hardware under test (HuT). Stable operation of the entire system, while maintaining acceptable accuracy, is the main challenge of a PHIL simulation. In this paper, after an extended stability analysis for voltage and current type interfaces, some guidelines are provided to have a stable PHIL simulation. The presented analysis have been evaluated by performing several experimental tests using a Real Time Digital Simulator (RTDS™) and a voltage source converter (VSC). The practical test results are consistent with the proposed analysis.