927 resultados para discrete equilibrium
Resumo:
Discrete Conditional Phase-type (DC-Ph) models are a family of models which represent skewed survival data conditioned on specific inter-related discrete variables. The survival data is modeled using a Coxian phase-type distribution which is associated with the inter-related variables using a range of possible data mining approaches such as Bayesian networks (BNs), the Naïve Bayes Classification method and classification regression trees. This paper utilizes the Discrete Conditional Phase-type model (DC-Ph) to explore the modeling of patient waiting times in an Accident and Emergency Department of a UK hospital. The resulting DC-Ph model takes on the form of the Coxian phase-type distribution conditioned on the outcome of a logistic regression model.
Resumo:
We report herein the screening, optimisation and scale up to 100 g of a bioreduction process that employs an in situ product removal (ISPR) technique to overcome the inherent equilibrium problem associated with the coupled-substrate approach to biocatalytic carbonyl reduction. This technique allowed the valuable chiral alcohol, (S)-2-bromo-2-cyclohexen-1-ol, to be isolated in 88% yield and 99.8% ee without the need for further purification, validating the general applicability of this experimental setup.
Resumo:
A methodology which allows a non-specialist to rapidly design silicon wavelet transform cores has been developed. This methodology is based on a generic architecture utilizing time-interleaved coefficients for the wavelet transform filters. The architecture is scaleable and it has been parameterized in terms of wavelet family, wavelet type, data word length and coefficient word length. The control circuit is designed in such a way that the cores can also be cascaded without any interface glue logic for any desired level of decomposition. This parameterization allows the use of any orthonormal wavelet family thereby extending the design space for improved transformation from algorithm to silicon. Case studies for stand alone and cascaded silicon cores for single and multi-stage analysis respectively are reported. The typical design time to produce silicon layout of a wavelet based system has been reduced by an order of magnitude. The cores are comparable in area and performance to hand-crafted designs. The designs have been captured in VHDL so they are portable across a range of foundries and are also applicable to FPGA and PLD implementations.
Resumo:
A generator for the automated design of Discrete Cosine Transform (DCT) cores is presented. This can be used to rapidly create silicon circuits from a high level specification. These compare very favourably with existing designs. The DCT cores produced are scaleable in terms of point size as well as input/output and coefficient wordlengths. This provides a high degree of flexibility. An example, 8-point 1D DCT design, produced occupies less than 0.92 mm when implemented in a 0.35µ double level metal CMOS technology. This can be clocked at a rate of 100MHz.
Resumo:
A methodology has been developed which allows a non-specialist to rapidly design silicon wavelet transform cores for a variety of specifications. The cores include both forward and inverse orthonormal wavelet transforms. This methodology is based on efficient, modular and scaleable architectures utilising time-interleaved coefficients for the wavelet transform filters. The cores are parameterized in terms of wavelet type and data and coefficient word lengths. The designs have been captured in VHDL and are hence portable across a range of silicon foundries as well as FPGA and PLD implementations.
Resumo:
Objective: Establish maternal preferences for a third-trimester ultrasound scan in a healthy, low-risk pregnant population.
Design: Cross-sectional study incorporating a discrete choice experiment.
Setting: A large, urban maternity hospital in Northern Ireland.
Participants: One hundred and forty-six women in their second trimester of pregnancy.
Methods: A discrete choice experiment was designed to elicit preferences for four attributes of a third-trimester ultrasound scan: health-care professional conducting the scan, detection rate for abnormal foetal growth, provision of non-medical information, cost. Additional data collected included age, marital status, socio-economic status, obstetric history, pregnancy-specific stress levels, perceived health and whether pregnancy was planned. Analysis was undertaken using a mixed logit model with interaction effects.
Main outcome measures: Women's preferences for, and trade-offs between, the attributes of a hypothetical scan and indirect willingness-to-pay estimates.
Results: Women had significant positive preference for higher rate of detection, lower cost and provision of non-medical information, with no significant value placed on scan operator. Interaction effects revealed subgroups that valued the scan most: women experiencing their first pregnancy, women reporting higher levels of stress, an adverse obstetric history and older women.
Conclusions: Women were able to trade on aspects of care and place relative importance on clinical, non-clinical outcomes and processes of service delivery, thus highlighting the potential of using health utilities in the development of services from a clinical, economic and social perspective. Specifically, maternal preferences exhibited provide valuable information for designing a randomized trial of effectiveness and insight for clinical and policy decision makers to inform woman-centred care.
Resumo:
Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5 MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter.
Resumo:
Particulate systems are of interest in many disciplines. They are often investigated using the discrete element method because of its capability to investigate particulate systems at the individual particle scale. To model the interaction between two particles and between a particle and a boundary, conventional discrete element models use springs and dampers in both the normal and tangential directions. The significance of particle rotation has been highlighted in both numerical studies and physical experiments. Several researchers have attempted to incorporate a rotational torque to account for the rolling resistance or rolling friction by developing different models. This paper presents a review of the commonly used models for rolling resistance and proposes a more general model. These models are classified into four categories according to their key characteristics. The robustness of these models in reproducing rolling resistance effects arising from different physical situations was assessed by using several benchmarking test cases. The proposed model can be seen to be more general and suitable for modelling problems involving both dynamic and pseudo-static regimes. An example simulation of the formation of a 2D sandpile is also shown. For simplicity, all formulations and examples are presented in 2D form, though the general conclusions are also applicable to 3D systems.