962 resultados para atoms and molecules
Resumo:
The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2×1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ±22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by −4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (b10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.
Resumo:
The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF.
Resumo:
New bifunctional pyrazole based ligands of the type [C3HR2N2CONR'] (where R = H or CH3; R' = CH3, C2H5, or (C3H7)-C-i) were prepared and characterized. The coordination chemistry of these ligands with uranyl nitrate and uranyl bis(dibenzoyl methanate) was studied with infrared (IR), H-1 NMR, electrospray-mass spectrometry (ES-MS), elemental analysis, and single crystal X-ray diffraction methods. The structure of compound [UO2(NO3)(2)(C3H3N2CON{C2H5}(2))] (2) shows that the uranium(VI) ion is surrounded by one nitrogen atom and seven oxygen atoms in a hexagonal bipyramidal geometry with the ligand acting as a bidentate chelating ligand and bonds through both the carbamoyl oxygen and pyrazolyl nitrogen atoms. In the structure of [UO2(NO3)(2)(H2O)(2)(C5H7N2CON {C2H5}(2))(2)], (5) the pyrazole figand acts as a second sphere ligand and hydrogen bonds to the water molecules through carbamoyl oxygen and pyrazolyl nitrogen atoms. The structure of [UO2(DBM)(2)C3H3N2CON{C2H5}(2)] (8) (where DBM = C6H5COCHCOC6H5) shows that the pyrazole ligand acts as a monodentate ligand and bonds through the carbamoyl oxygen to the uranyl group. The ES-MS spectra of 2 and 8 show that the ligand is similarly bonded to the metal ion in solution. Ab initio quantum chemical studies show that the steric effect plays the key role in complexation behavior.
Resumo:
The o-palladated, chloro-bridged dimers [Pd{2-phenylpyridine(-H)}-μ-Cl]2 and [Pd{N,N-dimethylbenzylamine(-H)}-μ-Cl]2 react with cyanuric acid in the presence of base to afford closed, chiral cage-molecules in which twelve organo-Pd(II) centers, located in pairs at the vertices of an octahedron, are linked by four tetrahedrally-arranged cyanurato(3-) ligands. Incomplete (Pd10) cages, having structures derived from the corresponding Pd12 cages by replacing one pair of organopalladium centers with two protons, have also been isolated. Reaction of [Pd{2-phenylpyridine(-H)}-μ-Cl]2 with trithiocyanuric acid gives an entirely different and more open type of cage-complex, comprising only nine organopalladium centers and three thiocyanurato(3-) ligands: cage-closure in this latter system appears to be inhibited by steric crowding of the thiocarbonyl groups.
Resumo:
Dairy intake, despite its high saturated fatty acid (SFA) content, is associated with a lower risk of cardiovascular disease and diabetes. This in vitro study determined the effect of individual fatty acids (FA) found in dairy, and FA mixtures representative of a high SFA and a low SFA dairy lipid on markers of endothelial function in healthy and type II diabetic aortic endothelial cells.
Resumo:
This work presents a model study for the formation of a dimeric dioxomolybdenum(VI) complex [MoO2L]2, generated by simultaneous satisfaction of acceptor and donor character existing in the corresponding monomeric Mo(VI) complex MoO2L. This mononuclear complex is specially designed to contain a coordinatively unsaturated Mo(VI) acceptor centre and a free donor group, (e.g. –NH2 group) strategically placed in the ligand skeleton [H2L = 2-hydroxyacetophenonehydrazone of 2-aminobenzoylhydrazine]. Apart from the dimer [MoO2L]2, complexes of the type MoO2L·B (where B = CH3OH, γ-picoline and imidazole) are also reported. All the complexes are characterized by elemental analysis, spectroscopic (UV–Vis, IR, 1H NMR) techniques and cyclic voltammetry. Single crystal X-ray structures of [MoO2L]2 (1), MoO2L·CH3OH (2), and MoO2L.(γ-pic) (3) have been determined and discussed. DFT calculation on these complexes corroborates experimental data and provides clue for the facile formation of this type of dimer not reported previously. The process of dimer formation may also be viewed as an interaction between two molecules of a specially designed complex acting as a monodentate ligand. This work is expected to open up a new field of design and synthesis of dimeric complexes through the process of symbiotic donor–acceptor (acid–base) interaction between two molecules of a specially designed monomer.
Resumo:
We show that Syk is critical for lamellipodia formation on a range of immobilized proteins but that this can be overcome by addition of thrombin. Further, we reveal a novel role for GPVI in supporting thrombin-induced activation, independent of Syk and Src kinases.
Resumo:
An article about the electronic musician Holly Herndon. Lina Džuverović locates Holly Herndon’s ‘voice-body’ at the intersection of feminist vocalisations, accelerationist politics and the networks and surveillance of digital life.
Resumo:
Background and Aims The amount of data collected previously for Velloziaceae neither clarified relationships within the family nor helped determine an appropriate classification, which has led to huge discordance among treatment by different authors. To achieve an acceptable phylogenetic result and understand the evolution and roles of characters in supporting groups, a total evidence analysis was developed which included approx. 20 % of the species and all recognized genera and sections of Velloziaceae, plus outgroups representatives of related families within Pandanales. Methods Analyses were undertaken with 48 species of Velloziaceae, representing all ten genera, with DNA sequences from the atpB-rbcL spacer, trnL-trnF spacer, trnL intron, trnH-psbA spacer, ITS ribosomal DNA spacers and morphology. Key Results Four groups consistently emerge from the analyses. Persistent leaves, two phloem strands, stem cortex divided in three regions and violet tepals support Acanthochlamys as sister to Velloziaceae s. s., which are supported mainly by leaves with marginal bundles, transfusion tracheids and inflorescence without axis. Within Velloziaceae s. s., an African Xerophyta + Talbotia clade is uniquely supported by basal loculicidal capsules; an American clade, Barbacenia s. l. + Barbaceniopsis + Nanuza + Vellozia, is supported by only homoplastic characters. Barbacenia s. l. (Aylthonia + Barbacenia + Burlemarxia + Pleurostima) is supported by a double sheath in leaf vascular bundles and a corona; Barbaceniopsis + Nanuza + Vellozia is not supported by an unambiguous character, but Barbaceniopsis is supported by five characters, including diclinous flowers, Nanuza + Vellozia is supported mainly by horizontal stigma lobes and stem inner cortex cells with secondary walls, and Vellozia alone is supported mainly by pollen in tetrads. Conclusions The results imply recognition of five genera (Acanthochlamys (Xerophyta (Barbacenia (Barbaceniopsis, Vellozia)))), solving the long-standing controversies among recent classifications of the family. They also suggest a Gondwanan origin for Velloziaceae, with a vicariant pattern of distribution.
Resumo:
Crotoxin is the main neurotoxic component of Crotalus durissus terrificus snake venom and modulates immune and inflammatory responses, interfering with the activity of leukocytes. In the present work, the effects of crotoxin on the number of blood and lymphatic leukocytes and on lymph nodes and spleen lymphocytes population were investigated. The toxin s.c. administered to male Wistar rats, decreases the number of lymphocytes in blood and lymph circulation and increases the content of B and T-lymphocytes in lymph nodes. These effects were detected 1-2 h after treatment. The crotoxin molecule is composed of two subunits, an acidic non-toxic polypeptide, named crotapotin and a toxic basic phospholipase A(2) (PLA(2)). PLA(2), but not crotapotin, decreased the number of circulating blood and lymph lymphocytes. Crotoxin promotes leukocyte adherence to endothelial cells of blood microcirculation and to lymph node high endothelial venules, which might contribute to the drop in the number of circulating lymphocytes. Crotoxin increases expression of the adhesion molecule LFA-1 in lymphocytes. The changes in the expression of the adhesion molecule might contribute, at least in part, for the increased leukocyte adhesion to endothelium. Zileuton, a 5-lipoxygenase inhibitor, blocked the decrease in the number of circulating leukocytes induced by crotoxin and also abolished the changes observed in leukocyte-endothelial interactions, suggesting the involvement of lipoxygenase-derived mediators in the effects of the toxin. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The host defense mechanism in chromoblastomycosis has not been thoroughly investigated. It has been suggested that cell- mediated immunity in patients with long- standing chromoblastomycosis is somehow impaired. As a result, these individuals became unable to develop an efficient immune reaction. Many studies have shown that monocyte- derived macrophages exhibit critical activities in immunity to microorganisms. Moreover, the ability of cells from the monocytic lineage to process and present antigens, to produce cytokines, and to provide costimulatory signals confirms their pivotal role in the initiation of specific immune responses. In the present study, it was observed that monocytes from patients with a severe form of disease had a higher production of IL- 10 and a lower expression of HLA- DR and costimulatory molecules when stimulated with specific antigen or LPS. Immune modulation with recombinant IL- 12 or anti- IL- 10 can restore the antigen- specific Th1- type immune response in chromoblastomycosis patients by up- regulating HLA- DR and costimulatory molecules in monocytes. Therefore, our data show that monocytes from patients with different clinical forms of chromoblastomycosis present distinct phenotypic and functional profiles. This observation suggests possible mechanisms that control the T cell response and influence their role in the development of pathology.
Resumo:
We use QCD sum rules to study the recently observed resonance-like structures in the pi(+)chi(c1) mass distribution, Z(1)(+) (4050) and Z(2)(+) (4250), considered as D*(+) (D) over bar*(0) and D(1)(+) (D) over bar (0) + D(+) (D) over bar (0)(1) molecules with the quantum number J(P) = 0(+) and J(P) = 1-, respectively. We consider the contributions of condensates up to dimension eight and work at leading order in alpha(s). We obtain m(D*D*) = (4.15 +/- 0.12) GeV, around 100 MeV above the D*D* threshold, and m(D1D) = (4.19 +/- 0.22) GeV, around 100 MeV below the D(1)D threshold. We conclude that the D*(+)(D) over bar*(0) state is probably a virtual state that is not related with the Z(1)(+) (4050) resonance-like structure. In the case of the D(1)D molecular state, considering the errors, its mass is consistent with both Z(1)(+)(4050) and Z(2)(+)(4250) resonance-like structures. Therefore, we conclude that no definite conclusion can be drawn for this state from the present analysis. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x) = g(1)x(-1) + g(2)x(-2), x is an element of R(+) = [0, infinity). For g(2) > 0 and g(1) < 0, the potential is known as the Kratzer potential V(K)(x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schrodinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein`s method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.
Resumo:
We report vibrational excitation (v(i) = 0 -> v(f) = 1) cross-sections for positron scattering by H(2) and model calculations for the (v(i) = 0 -> v(f) = 1) excitation of the C-C symmetric stretch mode of C(2)H(2). The Feshbach projection operator formalism was employed to vibrationally resolve the fixed-nuclei phase shifts obtained with the Schwinger multichannel method. The near threshold behavior of H(2) and C(2)H(2) significantly differ in the sense that no low lying singularity (either virtual or bound state) was found for the former, while a e(+)-acetylene virtual state was found at the equilibrium geometry (this virtual state becomes a bound state upon stretching the molecule). For C(2)H(2), we also performed model calculations comparing excitation cross-sections arising from virtual (-i kappa(0)) and bound (+i kappa(0)) states symmetrically located around the origin of the complex momentum plane (i.e. having the same kappa(0)). The virtual state is seen to significantly couple to vibrations, and similar cross-sections were obtained for shallow bound and virtual states. (c) 2007 Elsevier B.V. All rights reserved.