922 resultados para aluminum phthalocyanine chloride
Resumo:
OBJECTIVES: To determine the effect on resin composite-to-dentin bond strength of incorporation of an acidic tin-chloride pretreatment in two adhesive systems. MATERIALS AND METHODS: Human molars were ground to expose mid-coronal dentin. For microtensile bond strength (μTBS) testing, dentin was treated with Optibond FL or Clearfil SE according to one of six protocols (n = 22/group). Group 1: Phosphoric acid etching, Optibond FL Prime, Optibond FL Adhesive (manufacturer's instructions; control); Group 2: Tin-chloride pretreatment, Optibond FL Prime, Optibond FL Adhesive; Group 3: Phosphoric acid etching, tin-chloride pretreatment, Optibond FL Prime, Optibond FL Adhesive; Group 4: Clearfil SE Primer, Clearfil SE Bond (manufacturer's instructions; control); Group 5: Phosphoric acid etching, Clearfil SE Primer, Clearfil SE Bond; and Group 6: Tin-chloride pretreatment, Clearfil SE Primer, Clearfil SE Bond. The molars were then built up with resin composite (Clearfil Majesty Esthetic). After storage (1 week, 100 % humidity, 37 °C) the μTBS was measured and failure mode was determined. Additionally, pretreated dentin surfaces were evaluated using SEM and EDX. The μTBS results were analyzed statistically by a Welch Two Sample t-test and a Kruskal-Wallis test followed by exact Wilcoxon rank sum tests with Bonferroni-Holm adjustment for multiple testing (α = 0.05). RESULTS: When Optibond FL was used, partial or total replacement of phosphoric acid with tin-chloride decreased μTBS significantly. In contrast, when Clearfil SE was used, inclusion of a tin-chloride pretreatment in the adhesive procedure increased μTBS significantly. CONCLUSIONS: Tin-chloride pretreatment had a beneficial influence on the bond promoting capacity of the MDP-containing adhesive system Clearfil SE.
Resumo:
Introduction: Myotonia congenita (MC) is caused by congenital defects in the muscle chloride channel CLC-1. This study used muscle velocity recovery cycles (MVRCs) to investigate how membrane function is affected. Methods: MVRCs and responses to repetitive stimulation were compared between 18 patients with genetically confirmed MC (13 recessive, 7 dominant) and 30 age-matched normal controls. Results: MC patients exhibited increased early supernormality, but treatment with sodium channel blockers prevented this. After multiple conditioning stimuli, late supernormality was enhanced in all MC patients, indicating delayed repolarization. These abnormalities were similar between the MC subtypes, but recessive patients showed a greater drop in amplitude during repetitive stimulation. Discussion: MVRCs indicate that chloride conductance only becomes important when muscle fibers are depolarized. The differential responses to repetitive stimulation suggest that in dominant MC the affected chloride channels are activated by strong depolarization, consistent with a positive shift of the CLC-1 activation curve. © 2013 Wiley Periodicals, Inc.
Resumo:
The ancient southern highlands on Mars (~3.5 Gyr old) contain > 600 regions that display spectral evidence in the infrared for the presence of chloride-bearing materials. Many of these locations were previously reported to display polygonal cracking patterns. We studied more than 80 of the chloride-bearing terrains using high-resolution (0.25-0.5 m/pixel) images, as well as near-infrared spectral data, to characterize the surface textures and the associated cracking patterns and mineralogies. Our study indicates that ~75% of the studied locations display polygonal cracks that resemble desiccation cracks, while some resemble salt expansion/thrust polygons. Furthermore, we detect, spectrally, the presence of smectites in association with ~30% of the studied fractured terrains. We note that smectites are a special class of swelling clay minerals that can induce formation of large desiccation cracks. As such, we suggest that the cracking patterns are indicative of the presence of smectite phyllosilicates even in the absence of spectral confirmation. Our results suggest that many chloride-bearing terrains have a lacustrine origin and a geologic setting similar to playas on Earth. Such locations would have contained ephemeral lakes that may have undergone repeated cycles of desiccation and recharging by a near-surface fluctuating water table in order to account for the salt-phyllosilicates associations. These results have notable implications for the ancient hydrology of Mars. We propose that the morphologies and sizes of the polygonal cracks can be used as paleoenvironmental, as well as lithological, indicators that could be helpful in planning future missions.
Resumo:
A membrane fraction (M$\sb{\rm PS}$), enriched in Cl$\sp-$ channels, has been isolated from bovine tracheal epithelia and renal cortex homogenates by hydrophobic chromatography. The tracheal fraction shows a 37 fold enrichment of Cl$\sp-$ channels over crude tracheal homogenates by net Cl$\sp-$ measurements in membrane vesicles. Alkaline phosphatase and (Na$\sp+$ + K$\sp+$)-ATPase are not found in these membranes, suggesting that they are not apical or basolateral plasma membranes. The M$\sb{\rm PS}$ fraction exhibits a protein profile unlike that of other membrane fractions with major proteins of 200 kDa and 42 kDa, proteins of 30 to 35 kDa, and lesser amounts of other proteins. Reconstitution of M$\sb{\rm PS}$ fractions from both trachea and kidney into planar lipid bilayers demonstrates the presence of a single type of anion channel. The current-voltage relationship of this channel is linear with a slope conductance of 84 pS in symmetrical 400 mM KCl, and is identical to that of the predominant anion channel observed in tracheal apical membranes under similar conditions (Valdivia, Dubinsky, and Coronado. Science, 1988). In addition, the voltage dependence, selectivity sequence of Cl$\sp- >$ Br$\sp- \ge$ I$\sp-$, and inhibition by low concentrations of the Cl$\sp-$ channel blocker, DIDS, correspond to those of the predominant apical membrane channel. Thus, although the M$\sb{\rm PS}$ fraction appears to be of subcellular origin, it may be functionally related to an apical membrane Cl$\sp-$ permeability. When renal M$\sb{\rm PS}$ membranes were treated with the detergent octyl-glucoside (OG, 2%) and centrifuged, the supernatant, sM$\sb{\rm PS}$, showed a 2 to 7-fold enrichment in specific Cl$\sp-$ flux activity compared with the detergent treated M$\sb{\rm PS}$. These solubilized proteins were then size fractionated on a Superose 12 HPLC gel filtration column, followed by fractionation on a Mono Q HPLC anion exchange column. Fractions that eluted in high salt consistently exhibited significant Cl$\sp-$ flux activity. These fractions had protein profiles consisting of a major band at 34 kDa, a band at 66 kDa, and variable faint bands. Fractions eluting in lower salt had protein profiles consisting of a single band at 34 kDa, and often had little or no Cl$\sp-$ flux activity. However, co-reconstitution of the low salt, solely 34 kDa protein-containing Mono Q fractions with sM$\sb{\rm PS}$ resulted in an enhancement of flux activity compared to that of sM$\sb{\rm PS}$ reconstituted alone. Flux assays of active Mono Q fractions showed that the channel retained its DIDS sensitivity. Applying sM$\sb{\rm PS}$ to a DIDS-affinity column and eluting with salt resulted in fractions with protein profiles again consisting of at least one major band at 34 kDa, a band at 66 kDa, and variable faint bands. Co-reconstitution with sM$\sb{\rm PS}$ again resulted in an enhancement of activity. Thus, the 34 kDa protein appears to be a component of the M$\sb{\rm PS}$ Cl$\sp-$ channel. ^
Resumo:
Information about fluid evolution and solute transport in a low-permeability metamorphic rock sequence has been obtained by comparing chloride concentrations and chlorine isotope ratios of pore water, groundwater, and fluid inclusions. The similarity of d37Cl values in fluid inclusions and groundwater suggests a closed-system evolution during the metamorphic overprint, and signatures established at this time appear to form the initial conditions for chloride transport after exhumation of the rock sequence.
Resumo:
We have determined the flux of calcium, chloride and nitrate to the McMurdo Dry Valleys region by analysing snow pits for their chemical composition and their snow accumulation using multiple records spanning up to 48 years. The fluxes demonstrate patterns related to elevation and proximity to the ocean. In general, there is a strong relationship between the nitrate flux and snow accumulation, indicating that precipitation rates may have a great influence over the nitrogen concentrations in the soils of the valleys. Aeolian dust transport plays an important role in the deposition of some elements (e.g. C(2+)) into the McMurdo Dry Valleys' soils. Because of the antiquity of some of the soil surfaces in the McMurdo Dry Valleys regions, the accumulated atmospheric flux of salts to the soils has important ecological consequences. Although precipitation may be an important mechanism of salt deposition to the McMurdo Dry Valley surfaces, it is poorly understood because of difficulties in measurement and high losses from sublimation.
Resumo:
In acid tropical forest soils (pH < 5.5) increased mobility of aluminum might limit aboveground productivity. Therefore, we evaluated Al phytotoxicity of three native tree species of tropical montane forests in southern Ecuador. An hydroponic dose-response experiment was conducted. Seedlings of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson were treated with 0, 300, 600, 1200, and 2400 mu M Al and an organic layer leachate. Dose-response curves were generated for root and shoot morphologic properties to determine effective concentrations (EC). Shoot biomass and healthy leaf area decreased by 44 % to 83 % at 2400 mu M Al, root biomass did not respond (C. odorata), declined by 51 % (H. americanus), or was stimulated at low Al concentrations of 300 mu M (T. chrysantha). EC10 (i.e. reduction by 10 %) values of Al for total biomass were 315 mu M (C. odorata), 219 mu M (H. americanus), and 368 mu M (T. chrysantha). Helicarpus americanus, a fast growing pioneer tree species, was most sensitive to Al toxicity. Negative effects were strongest if plants grew in organic layer leachate, indicating limitation of plant growth by nutrient scarcity rather than Al toxicity. Al toxicity occurred at Al concentrations far above those in native organic layer leachate.
Resumo:
Aluminum phytotoxicity frequently occurs in acid soils (pH < 5.5) and was therefore discussed to affect ecosystem functioning of tropical montane forests. The susceptibility to Al toxicity depends on the sensitivity of the plant species and the Al speciation in soil solution, which can vary highly depending e.g., on pH, ionic strength, and dissolved organic matter. An acidification of the ecosystem and periodic base metal deposition from Saharan dust may control plant available Al concentrations in the soil solutions of tropical montane rainforests in south Ecuador. The overall objective of my study was to assess a potential Al phytotoxicity in the tropical montane forests in south Ecuador. For this purpose, I exposed three native Al non-accumulating tree species (Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson) to increased Al concentrations (0 – 2400 μM Al) in a hydroponic experiment, I established dose-response curves to estimate the sensitivity of the tree species to increased Al concentrations, and I investigated the mechanisms behind the observed effects induced by elevated Al concentrations. Furthermore, the response of Al concentrations and the speciation in soil solution to Ca amendment in the study area were determined. In a final step, I assessed all major Al fluxes, drivers of Al concentrations in ecosystem solutions, and indicators of Al toxicity in the tropical montane rainforest in Ecuador in order to test for indications of Al toxicity. In the hydroponic experiment, a 10 % reduction in aboveground biomass production occurred at 126 to 376 μM Al (EC10 values), probably attributable to decreased Mg concentrations in leaves and reduced potosynthesis. At 300 μM Al, increased root biomass production of T. chrysantha was observed. Phosphorus concentrations in roots of C. odorata and T. chrysantha were significantly highest in the treatment with 300 μM Al and correlated significantly with root biomass, being a likely reason for stimulated root biomass production. The degree of organic complexation of Al in the organic layer leachate, which is central to plant nutrition because of the high root density, and soil solution from the study area was very high (mean > 99 %). The resulting low free Al concentrations are not likely to affect plant growth, although the concentrations of potentially toxic Al3+ increased with soil depth due to higher total Al and lower dissolved organic matter concentrations in soil solutions. The Ca additions caused an increase of Al in the organic layer leachate, probably because Al3+ was exchanged against the added Ca2+ ions while pH remained constant. The free ion molar ratios of Ca2+:Al3+ (mean ratio ca. 400) were far above the threshold (≤ 1) for Al toxicity, because of a much higher degree of organo-complexation of Al than Ca. High Al fluxes in litterfall (8.8 – 14.2 kg ha−1 yr−1) indicate a high Al circulation through the ecosystem. The Al concentrations in the organic layer leachate were driven by the acidification of the ecosystem and increased significantly between 1999 and 2008. However, the Ca:Al molar ratios in organic layer leachate and all aboveground ecosystem solutions were above the threshold for Al toxicity. Except for two Al accumulating and one non-accumulating tree species, the Ca:Al molar ratios in tree leaves from the study area were above the Al toxicity threshold of 12.5. I conclude that toxic effects in the hydroponic experiment occurred at Al concentrations far above those in native organic layer leachate, shoot biomass production was likely inhibited by reduced Mg uptake, impairing photosynthesis, and the stimulation of root growth at low Al concentrations can be possibly attributed to improved P uptake. Dissolved organic matter in soil solutions detoxifies Al in acidic tropical forest soils and a wide distribution of Al accumulating tree species and high Al fluxes in the ecosystem do not necessarily imply a general Al phytotoxicity.