812 resultados para Wireless sensor node modelling
Resumo:
Measurement of nitrifiable nitrogen contained in wastewater by combining the existing respirometric and titrimetric principles is reported. During an in-sensor-experiment using nitrifying activated sludge. both the dissolved oxygen (DO) and pH in the mixed liquor were measured, and the FH was controlled at a set-point through titration of base or acid. A combination of the oxygen uptake rate (OUR), which was obtained from the measured DO signal, and the titration data allowed calculation of the nitrifiable nitrogen and the short-term biological oxygen demand (BOD) of the wastewater sample that was initially added to the sludge. The calculation was based solely on stoichiometric relationships. The approach was preliminarily tested with two types of wastewaters using a prototype sensor. Good correlation was obtained. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Consider the problem of scheduling sporadic messages with deadlines on a wireless channel. We propose a collision-free medium access control (MAC) protocol which implements static-priority scheduling and present a schedulability analysis technique for the protocol. The MAC protocol allows multiple masters and is fully distributed; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel.
Resumo:
Localization is a fundamental task in Cyber-Physical Systems (CPS), where data is tightly coupled with the environment and the location where it is generated. The research literature on localization has reached a critical mass, and several surveys have also emerged. This review paper contributes on the state-of-the-art with the proposal of a new and holistic taxonomy of the fundamental concepts of localization in CPS, based on a comprehensive analysis of previous research works and surveys. The main objective is to pave the way towards a deep understanding of the main localization techniques, and unify their descriptions. Furthermore, this review paper provides a complete overview on the most relevant localization and geolocation techniques. Also, we present the most important metrics for measuring the accuracy of localization approaches, which is meant to be the gap between the real location and its estimate. Finally, we present open issues and research challenges pertaining to localization. We believe that this review paper will represent an important and complete reference of localization techniques in CPS for researchers and practitioners and will provide them with an added value as compared to previous surveys.
Resumo:
Operational Modal Analysis is currently applied in structural dynamic monitoring studies using conventional wired based sensors and data acquisition platforms. This approach, however, becomes inadequate in cases where the tests are performed in ancient structures with esthetic concerns or in others, where the use of wires greatly impacts the monitoring system cost and creates difficulties in the maintenance and deployment of data acquisition platforms. In these cases, the use of sensor platforms based on wireless and MEMS would clearly benefit these applications. This work presents a first attempt to apply this wireless technology to the structural monitoring of historical masonry constructions in the context of operational modal analysis. Commercial WSN platforms were used to study one laboratory specimen and one of the structural elements of a XV century building in Portugal. Results showed that in comparison to the conventional wired sensors, wireless platforms have poor performance in respect to the acceleration time series recorded and the detection of modal shapes. However, for frequency detection issues, reliable results were obtained, especially when random excitation was used as noise source.
Resumo:
In this paper, we address the problem of sharing a wireless channel among a set of sporadic message streams where a message stream issues transmission requests with real-time deadlines. We propose a collision-free wireless medium access control (MAC) protocol which implements static-priority scheduling, supports a large number of priority levels and is fully distributed. It is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But, unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel. The evaluation of the protocol with real embedded computing platforms is presented to show that the proposed protocol is in fact collision-free and prioritized. We measure the response times of our implementation and show that the response-time analysis developed for the protocol offers an upper bound on the response times.
Resumo:
We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.
Resumo:
Consider a wireless network where links may be unidirectional, that is, a computer node A can broadcast a message and computer node B will receive this message but if B broadcasts then A will not receive it. Assume that messages have deadlines. We propose a medium access control (MAC) protocol which replicates a message in time with carefully selected pauses between replicas, and in this way it guarantees that for every message at least one replica of that message is transmitted without collision. The protocol ensures this with no knowledge of the network topology and it requires neither synchronized clocks nor carrier sensing capabilities. We believe this result is significant because it is the only MAC protocol that offers an upper bound on the message queuing delay for unidirectional links without relying on synchronized clocks.
Resumo:
Consider a distributed computer system such that every computer node can perform a wireless broadcast and when it does so, all other nodes receive this message. The computer nodes take sensor readings but individual sensor readings are not very important. It is important however to compute the aggregated quantities of these sensor readings. We show that a prioritized medium access control (MAC) protocol for wireless broadcast can compute simple aggregated quantities in a single transaction, and more complex quantities with many (but still a small number of) transactions. This leads to significant improvements in the time-complexity and as a consequence also similar reduction in energy “consumption”.
Resumo:
We propose a collision-free medium access control (MAC) protocol, which implements static-priority scheduling and works in the presence of hidden nodes. The MAC protocol allows multiple masters and is fully distributed; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to sense the channel while transmitting to the channel. Our protocol is collision-free even in the presence of hidden nodes and it achieves this without synchronized clocks or out-of-band busy tones. In addition, the protocol is designed to ensure that many non-interfering nodes can transmit in parallel and it functions for both broadcast and unicast transmissions.
Resumo:
Wireless Body Area Networks (WBANs) have emerged as a promising technology for medical and non-medical applications. WBANs consist of a number of miniaturized, portable, and autonomous sensor nodes that are used for long-term health monitoring of patients. These sensor nodes continuously collect information of patients, which are used for ubiquitous health monitoring. In addition, WBANs may be used for managing catastrophic events and increasing the effectiveness and performance of rescue forces. The huge amount of data collected by WBAN nodes demands scalable, on-demand, powerful, and secure storage and processing infrastructure. Cloud computing is expected to play a significant role in achieving the aforementioned objectives. The cloud computing environment links different devices ranging from miniaturized sensor nodes to high-performance supercomputers for delivering people-centric and context-centric services to the individuals and industries. The possible integration of WBANs with cloud computing (WBAN-cloud) will introduce viable and hybrid platform that must be able to process the huge amount of data collected from multiple WBANs. This WBAN-cloud will enable users (including physicians and nurses) to globally access the processing and storage infrastructure at competitive costs. Because WBANs forward useful and life-critical information to the cloud – which may operate in distributed and hostile environments, novel security mechanisms are required to prevent malicious interactions to the storage infrastructure. Both the cloud providers and the users must take strong security measures to protect the storage infrastructure.
Resumo:
IEEE 802.11 is one of the most well-established and widely used standard for wireless LAN. Its Medium Access control (MAC) layer assumes that the devices adhere to the standard’s rules and timers to assure fair access and sharing of the medium. However, wireless cards driver flexibility and configurability make it possible for selfish misbehaving nodes to take advantages over the other well-behaving nodes. The existence of selfish nodes degrades the QoS for the other devices in the network and may increase their energy consumption. In this paper we propose a green solution for selfish misbehavior detection in IEEE 802.11-based wireless networks. The proposed scheme works in two phases: Global phase which detects whether the network contains selfish nodes or not, and Local phase which identifies which node or nodes within the network are selfish. Usually, the network must be frequently examined for selfish nodes during its operation since any node may act selfishly. Our solution is green in the sense that it saves the network resources as it avoids wasting the nodes energy by examining all the individual nodes of being selfish when it is not necessary. The proposed detection algorithm is evaluated using extensive OPNET simulations. The results show that the Global network metric clearly indicates the existence of a selfish node while the Local nodes metric successfully identified the selfish node(s). We also provide mathematical analysis for the selfish misbehaving and derived formulas for the successful channel access probability.
Resumo:
XXXIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2015). 15 to 19, May, 2015, III Workshop de Comunicação em Sistemas Embarcados Críticos. Vitória, Brasil.
Resumo:
Robotica 2012: 12th International Conference on Autonomous Robot Systems and Competitions April 11, 2012, Guimarães, Portugal
Resumo:
Smart Cities are designed to be living systems and turn urban dwellers life more comfortable and interactive by keeping them aware of what surrounds them, while leaving a greener footprint. The Future Cities Project [1] aims to create infrastructures for research in smart cities including a vehicular network, the BusNet, and an environmental sensor platform, the Urban Sense. Vehicles within the BusNet are equipped with On Board Units (OBUs) that offer free Wi-Fi to passengers and devices near the street. The Urban Sense platform is composed by a set of Data Collection Units (DCUs) that include a set of sensors measuring environmental parameters such as air pollution, meteorology and noise. The Urban Sense platform is expanding and receptive to add new sensors to the platform. The parnership with companies like TNL were made and the need to monitor garbage street containers emerged as air pollution prevention. If refuse collection companies know prior to the refuse collection which route is the best to collect the maximum amount of garbage with the shortest path, they can reduce costs and pollution levels are lower, leaving behind a greener footprint. This dissertation work arises in the need to monitor the garbage street containers and integrate these sensors into an Urban Sense DCU. Due to the remote locations of the garbage street containers, a network extension to the vehicular network had to be created. This dissertation work also focus on the Multi-hop network designed to extend the vehicular network coverage area to the remote garbage street containers. In locations where garbage street containers have access to the vehicular network, Roadside Units (RSUs) or Access Points (APs), the Multi-hop network serves has a redundant path to send the data collected from DCUs to the Urban Sense cloud database. To plan this highly dynamic network, the Wi-Fi Planner Tool was developed. This tool allowed taking measurements on the field that led to an optimized location of the Multi-hop network nodes with the use of radio propagation models. This tool also allowed rendering a temperature-map style overlay for Google Earth [2] application. For the DCU for garbage street containers the parner company provided the access to a HUB (device that communicates with the sensor inside the garbage containers). The Future Cities use the Raspberry pi as a platform for the DCUs. To collect the data from the HUB a RS485 to RS232 converter was used at the physical level and the Modbus protocol at the application level. To determine the location and status of the vehicles whinin the vehicular network a TCP Server was developed. This application was developed for the OBUs providing the vehicle Global Positioning System (GPS) location as well as information of when the vehicle is stopped, moving, on idle or even its slope. To implement the Multi-hop network on the field some scripts were developed such as pingLED and “shark”. These scripts helped upon node deployment on the field as well as to perform all the tests on the network. Two setups were implemented on the field, an urban setup was implemented for a Multi-hop network coverage survey and a sub-urban setup was implemented to test the Multi-hop network routing protocols, Optimized Link State Routing Protocol (OLSR) and Babel.