930 resultados para WSN low-power networking
Resumo:
Major in Competition and Regulation
Resumo:
The aim of this brief is to present an original design methodology that permits implementing latch-up-free smart power circuits on a very simple, cost-effective technology. The basic concept used for this purpose is letting float the wells of the MOS transistors most susceptible to initiate latch-up.
Resumo:
The demand for electricity is constantly growing in contemporary world and, in the same time, quality and reliability requirements are becoming more rigid. In addition, renewable sources of energy have been widely introduced for power generation, and they create specific challenges for the network. Consequently, new solution for distribution system is required, and Low Voltage Direct Current (LVDC) system is the proposed one. This thesis focuses on the investigation of specific cable features for low voltage direct current (LVDC) distribution system. The LVDC system is public ±750 VDC distribution system, which is currently being developed at Lappeen-ranta University of Technology. The aspects, considered in the thesis, are reliable and economic power transmission in distribution networks and possible power line communication in the LVDC cable.
Resumo:
Permanent magnet generators (PMG) represent the cutting edge technology in modern wind mills. The efficiency remains high (over 90%) at partial loads. To improve the machine efficiency even further, every aspect of machine losses has to be analyzed. Additional losses are often given as a certain percentage without providing any detailed information about the actual calculation process; meanwhile, there are many design-dependent losses that have an effect on the total amount of additional losses and that have to be taken into consideration. Additional losses are most often eddy current losses in different parts of the machine. These losses are usually difficult to calculate in the design process. In this doctoral thesis, some additional losses are identified and modeled. Further, suggestions on how to minimize the losses are given. Iron losses can differ significantly between the measured no-load values and the loss values under load. In addition, with embedded magnet rotors, the quadrature-axis armature reaction adds losses to the stator iron by manipulating the harmonic content of the flux. It was, therefore, re-evaluated that in salient pole machines, to minimize the losses and the loss difference between the no-load and load operation, the flux density has to be kept below 1.5 T in the stator yoke, which is the traditional guideline for machine designers. Eddy current losses may occur in the end-winding area and in the support structure of the machine, that is, in the finger plate and the clamping ring. With construction steel, these losses account for 0.08% of the input power of the machine. These losses can be reduced almost to zero by using nonmagnetic stainless steel. In addition, the machine housing may be subjected to eddy current losses if the flux density exceeds 1.5 T in the stator yoke. Winding losses can rise rapidly when high frequencies and 10–15 mm high conductors are used. In general, minimizing the winding losses is simple. For example, it can be done by dividing the conductor into transposed subconductors. However, this comes with the expense of an increase in the DC resistance. In the doctoral thesis, a new method is presented to minimize the winding losses by applying a litz wire with noninsulated strands. The construction is the same as in a normal litz wire but the insulation between the subconductors has been left out. The idea is that the connection is kept weak to prevent harmful eddy currents from flowing. Moreover, the analytical solution for calculating the AC resistance factor of the litz-wire is supplemented by including an end-winding resistance in the analytical solution. A simple measurement device is developed to measure the AC resistance in the windings. In the case of a litz-wire with originally noninsulated strands, vacuum pressure impregnation (VPI) is used to insulate the subconductors. In one of the two cases studied, the VPI affected the AC resistance factor, but in the other case, it did not have any effect. However, more research is needed to determine the effect of the VPI on litz-wire with noninsulated strands. An empirical model is developed to calculate the AC resistance factor of a single-layer formwound winding. The model includes the end-winding length and the number of strands and turns. The end winding includes the circulating current (eddy currents that are traveling through the whole winding between parallel strands) and the main current. The end-winding length also affects the total AC resistance factor.
Power Electronic Converters in Low-Voltage Direct Current Distribution – Analysis and Implementation
Resumo:
Over the recent years, smart grids have received great public attention. Many proposed functionalities rely on power electronics, which play a key role in the smart grid, together with the communication network. However, “smartness” is not the driver that alone motivates the research towards distribution networks based on power electronics; the network vulnerability to natural hazards has resulted in tightening requirements for the supply security, set both by electricity end-users and authorities. Because of the favorable price development and advancements in the field, direct current (DC) distribution has become an attractive alternative for distribution networks. In this doctoral dissertation, power electronic converters for a low-voltage DC (LVDC) distribution system are investigated. These include the rectifier located at the beginning of the LVDC network and the customer-end inverter (CEI) on the customer premises. Rectifier topologies are introduced, and according to the LVDC system requirements, topologies are chosen for the analysis. Similarly, suitable CEI topologies are addressed and selected for study. Application of power electronics into electricity distribution poses some new challenges. Because the electricity end-user is supplied with the CEI, it is responsible for the end-user voltage quality, but it also has to be able to supply adequate current in all operating conditions, including a short-circuit, to ensure the electrical safety. Supplying short-circuit current with power electronics requires additional measures, and therefore, the short-circuit behavior is described and methods to overcome the high-current supply to the fault are proposed. Power electronic converters also produce common-mode (CM) and radio-frequency (RF) electromagnetic interferences (EMI), which are not present in AC distribution. Hence, their magnitudes are investigated. To enable comprehensive research on the LVDC distribution field, a research site was built into a public low-voltage distribution network. The implementation was a joint task by the LVDC research team of Lappeenranta University of Technology and a power company Suur-Savon S¨ahk¨o Oy. Now, the measurements could be conducted in an actual environment. This is important especially for the EMI studies. The main results of the work concern the short-circuit operation of the CEI and the EMI issues. The applicability of the power electronic converters to electricity distribution is demonstrated, and suggestions for future research are proposed.
Resumo:
In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay
Resumo:
Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year
Resumo:
In vitro studies have provided conflicting evidence of temperature changes in the tooth pulp chamber after low-level laser irradiation of the tooth surface. The present study was an in vitro evaluation of temperature increases in the human tooth pulp chamber after diode laser irradiation (GaAlAs, lambda = 808 nm) using different power densities. Twelve human teeth (three incisors, three canines, three premolars and three molars) were sectioned in the cervical third of the root and enlarged for the introduction of a thermocouple into the pulp chamber. The teeth were irradiated with 417 mW, 207 mW and 78 mW power outputs for 30 s on the vestibular surface approximately 2 mm from the cervical line of the crown. The highest average increase in temperature (5.6A degrees C) was observed in incisors irradiated with 417 mW. None of the teeth (incisors, canines, premolars or molars) irradiated with 207 mW showed temperature increases higher than 5.5A degrees C that could potentially be harmful to pulp tissue. Teeth irradiated with 78 mW showed lower temperature increases. The study showed that diode laser irradiation with a wavelength of 808 nm at 417 mW power output increased the pulp chamber temperature of certain groups of teeth, especially incisors and premolars, to critical threshold values for the dental pulp (5.5A degrees C). Thus, this study serves as a warning to clinicians that ""more"" is not necessarily ""better"".
Resumo:
This work proposes a new isolated high power factor 12kW power supply based on an 18-pulse transformer arrangement. Three full-bridge converters are used for isolation and to balance the DC-link currents, without current sensing or a current controller. The topology provides a regulated DC output with a very simple control strategy. Simulation and experimental results are presented in this paper.
Resumo:
In the last 20 years immense efforts have been made to utilize renewable energy sources for electric power generation. This paper investigates some aspects of integration of the distributed generators into the low voltage distribution network. An assessment of impact of the distributed generators on the voltage and current harmonic distortion in the low voltage network is performed. Results obtained from a case study, using real-life low voltage network, are presented and discussed.
Resumo:
This work proposes a method for dioptric power mapping of progressive lenses through dual wavelength, low-coherence digital speckle pattern interferometry. Lens characterization finds several applications and is extremely useful in the fields of ophthalmology and astronomy, among others. The optical setup employs two red diode lasers which are conveniently aligned and tuned in order to generate a synthetic wavelength. The resulting speckle image formed onto a diffusive glass plate positioned behind the test lens appears covered of contour interference fringes describing the deformation on the light wavefront due to the analyzed lens. By employing phase stepping and phase unwrapping methods the wavefront phase was retrieved and then expressed in terms of a Zernike series. From this series, expressions for the dioptric power and astigmatic power were derived as a function of the x- and y-coordinates of the lens aperture. One spherical and two progressive lenses were measured. The experimental results presented a good agreement with those obtained through a commercial lensometer, showing the potentialities of the method. © 2013 Elsevier Ltd.
Resumo:
Includes bibliography
Resumo:
This study uses some backward-looking versions of Phillips curves, estimated from both revised and real-time data, to explore the existence, robustness and size of the contribution that a variety of activity measures may make to the task of predicting inflation in Chile. The main results confirm the findings of the recent international literature: the predictive power of the activity measures considered here is episodic, unstable and of moderate size. This weak predictive contribution is robust to the use of final and real-time data.
Resumo:
Wireless sensor networks (WSNs) are generally used to monitor hazardous events in inaccessible areas. Thus, on one hand, it is preferable to assure the adoption of the minimum transmission power in order to extend as much as possible the WSNs lifetime. On the other hand, it is crucial to guarantee that the transmitted data is correctly received by the other nodes. Thus, trading off power optimization and reliability insurance has become one of the most important concerns when dealing with modern systems based on WSN. In this context, we present a transmission power self-optimization (TPSO) technique for WSNs. The TPSO technique consists of an algorithm able to guarantee the connectivity as well as an equally high quality of service (QoS), concentrating on the WSNs efficiency (Ef), while optimizing the transmission power necessary for data communication. Thus, the main idea behind the proposed approach is to trade off WSNs Ef against energy consumption in an environment with inherent noise. Experimental results with different types of noise and electromagnetic interference (EMI) have been explored in order to demonstrate the effectiveness of the TPSO technique.
Resumo:
The current design life of nuclear power plant (NPP) could potentially be extended to 80 years. During this extended plant life, all safety and operationally relevant Instrumentation & Control (I&C) systems are required to meet their designed performance requirements to ensure safe and reliable operation of the NPP, both during normal operation and subsequent to design base events. This in turn requires an adequate and documented qualification and aging management program. It is known that electrical insulation of I&C cables used in safety related circuits can degrade during their life, due to the aging effect of environmental stresses, such as temperature, radiation, vibration, etc., particularly if located in the containment area of the NPP. Thus several condition monitoring techniques are required to assess the state of the insulation. Such techniques can be used to establish a residual lifetime, based on the relationship between condition indicators and ageing stresses, hence, to support a preventive and effective maintenance program. The object of this thesis is to investigate potential electrical aging indicators (diagnostic markers) testing various I&C cable insulations subjected to an accelerated multi-stress (thermal and radiation) aging.