977 resultados para T Cell Antigen Receptor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mycolyl transferase antigen 85 complex is a major secreted protein family from mycobacterial culture filtrate, demonstrating powerful T cell stimulatory properties in most HIV-negative, tuberculin-positive volunteers with latent M.tuberculosis infection and only weak responses in HIV-negative tuberculosis patients. Here, we have analyzed T cell reactivity against PPD and Ag85 in HIV-infected individuals, without or with clinical symptoms of tuberculosis, and in AIDS patients with disease caused by nontuberculous mycobacteria. Whereas responses to PPD were not significantly different in HIV-negative and HIV-positive tuberculin-positive volunteers, responses to Ag85 were significantly decreased in the HIV-positive (CDC-A and CDC-B) group. Tuberculosis patients demonstrated low T cell reactivity against Ag85, irrespective of HIV infection, and finally AIDS patients suffering from NTM infections were completely nonreactive to Ag85. A one-year follow-up of twelve HIV-positive tuberculin-positive individuals indicated a decreased reactivity against Ag85 in patients developing clinical tuberculosis, highlighting the protective potential of this antigen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract: Protective immune responses against pathogen invasion and transformed cells requires the coordinated action of distinct leukocyte subsets and soluble factors, overall termed immunological network. Among antigen-presenting cells (APC), a crucial role is played by dendritic cells (DC), which initiate, amplify and determine the outcome of the immune response. Micro-environmental conditions profoundly influence DC in such ways that the resulting immune response ranges from successful immune stimulation to abortive response or immune suppression. For instance, the presence in the milieu of anti-inflammatory cytokine interleukin-10 (IL-10) reverts most of the effects mediated on DC by even strong pro-inflammatory agents such as bacterial Lipopolysaccharide (LPS), in terms of differentiation, activation and functions. In an environment containing both LPS and IL-10, uncoupling of receptors for inflammatory chemokines already occurs after a few hours and in a reversible manner on DC, allowing scavenging of chemokines and, consequently, attenuation of the inflammatory process which could be deleterious to the organism. By studying the effects on DC of concomitant stimulation by LPS and IL-10 from the gene expression point of view, we were able to define four distinct transcriptional programs: A. the inhibition of inflammation and immunity, B. the regulation of tissue remodeling, C. the tuning of cytokine/growth factor receptors and G protein-coupled receptors, D. the stimulation of B cell function and lymphoid tissue neogenesis. Among the latter genes, we further demonstrated that IL-10 synergizes with Toll-like receptor ligands for the production of functionally active B cell attracting chemokine CXCL13. Our data provide evidence that the combined exposure of APC to LPS and IL-10, via the production of CXCL13, involves humoral immunity by attracting antibody-producing cells. It is well known that the persistent release of CXCL13 leads to the development of ectopic lymphoid tissue aggregates and production of high levels of antibodies, thus favoring the induction of auto-immunity. Our findings suggest that the IL-10 produced in chronic inflammatory conditions may promote lymphoid tissue neogenesis through increased release of CXCL13. IL-10 is an anti-inflammatory cytokine inhibiting cellular-mediated TH 1-polarized immune responses. In this study we demonstrate that IL- 10 strongly supports the development of humoral immunity. IL-10 and CXCL13 can thus be targets for specific therapies in auto-immune diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cytotoxic T cell (CTL) activation by antigen requires the specific detection of peptide-major histocompatibility class I (pMHC) molecules on the target-cell surface by the T cell receptor (TCR). We examined the effect of mutations in the antigen-binding site of a Kb-restricted TCR on T cell activation, antigen binding and dissociation from antigen.These parameters were also examined for variants derived from a Kd-restricted peptide that was recognized by a CTL clone. Using these two independent systems, we show that T cell activation can be impaired by mutations that either decrease or increase the binding half-life of the TCR-pMHC interaction. Our data indicate that efficient T cell activation occurs within an optimal dwell-time range of TCR-pMHC interaction. This restricted dwell-time range is consistent with the exclusion of either extremely low or high affinity T cells from the expanded population during immune responses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Natural killer (NK) cells show enhanced functional competence when they express inhibitory receptors specific for inherited major histocompatibility complex class I (MHC-I) molecules. Current models imply that NK cell education requires an interaction of inhibitory receptors with MHC-I expressed on other cells. However, the inhibitory Ly49A receptor can also bind MHC-I ligand on the NK cell itself (in cis). Here we describe a Ly49A variant, which can engage MHC-I expressed on other cells but not in cis. Even though this variant inhibited NK cell effector function, it failed to educate NK cells. The association with MHC-I in cis sequestered wild-type Ly49A, and this was found to relieve NK cells from a suppressive effect of unengaged Ly49A. These data explain how inhibitory MHC-I receptors can facilitate NK cell activation. They dissociate classical inhibitory from educating functions of Ly49A and suggest that cis interaction of Ly49A is necessary for NK cell education.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds to major histocompatibility complex class II molecules and selectively interacts with T cells that bear certain T cell receptor (TCR) V beta domains. Administration of SEB in adult mice results in initial proliferation of V beta 8+ T cells followed by a state of unresponsiveness resulting from a combination of clonal deletion and clonal anergy in the SEB-reactive population. At this time, it is unclear what relationship exists between the T cells that have proliferated and those that have been deleted or have become anergic. Here we show that only a fraction of the potentially reactive V beta 8+ T cells proliferate in response to SEB in vivo, and that all the cells that have proliferated eventually undergo apoptosis. Virtually no apoptosis can be detected in the nonproliferating V beta 8+ T cells. These data demonstrate a causal relationship between proliferation and apoptosis in response to SEB in vivo, and they further indicate that T cells bearing the same TCR V beta segment can respond differently to the same superantigen. The implications of this differential responsiveness in terms of activation and tolerance are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direct type I interferon (IFN) signaling on T cells is necessary for the proper expansion, differentiation, and survival of responding T cells following infection with viruses prominently inducing type I IFN. The reasons for the abortive response of T cells lacking the type I IFN receptor (Ifnar1(-/-)) remain unclear. We report here that Ifnar1(-/-) T cells were highly susceptible to natural killer (NK) cell-mediated killing in a perforin-dependent manner. Depletion of NK cells prior to lymphocytic choriomeningitis virus (LCMV) infection completely restored the early expansion of Ifnar1(-/-) T cells. Ifnar1(-/-) T cells had elevated expression of natural cytotoxicity triggering receptor 1 (NCR1) ligands upon infection, rendering them targets for NCR1 mediated NK cell attack. Thus, direct sensing of type I IFNs by T cells protects them from NK cell killing by regulating the expression of NCR1 ligands, thereby revealing a mechanism by which T cells can evade the potent cytotoxic activity of NK cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The authors developed a standardized approach for immune monitoring of antigen-specific CD8+ T cells within peripheral blood lymphocytes (PBLs) that combines direct ex vivo analysis of Melan-A/MART-1 and influenza-specific CD8+ T cells with HLA-A2/peptide multimers and interferon-gamma ELISPOT assays. Here the authors assessed the quality of results obtained with 180 PBLs from healthy donors and melanoma patients. Reproducibility of the multimer assay was good (average of 15% variation). In the absence of in vivo antigen-specific T-cell responses, physiologic fluctuations of multimer-positive T cells was low, with variation coefficients of 20% for Melan-A and 28% for influenza-specific T cells. In contrast, patients with vaccination-induced T-cell responses had significantly increased T-cell frequencies clearly exceeding physiologic fluctuations. Comparable results were obtained with ELISPOT assays. In conclusion, this approach is well suited to assess T-cell responses as biologic endpoints in clinical vaccine studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Résumé Des tentatives pour développer des traitements anti-cancéreux basés sur l'utilisation d'antigènes tumoraux ont commencé il y a plus de 10 ans. Depuis quelques années, un certain intérêt s'est portée sur une sous-population particulière des cellules du système immunitaire, les lymphocytes T CD4. Ces cellules jouent un rôle central dans les réponses immunitaires tant contre les virus que contre les cellules tumorales. Comme d'autres lymphocytes T, ces cellules sont activées de manière spécifique en reconnaissant un morceau d'antigène, appelé peptide. Ces peptides proviennent soit de protéines des cellules de l'hôte, soit des protéines étrangères (virus ou bactéries) soit de cellules transformées (cellules tumorales) et sont présentés aux lymphocytes T par des molécules du soi appelées CMH (complexe majeur d'histocompatibilité). Dans le cas des lymphocytes T CD4, ces molécules sont plus précisément des molécules du CMH de classe II (CMH II). Mis à part l'intérêt porté aux réponses médiées par les lymphocytes T cytotoxiques, un intérêt croissant pour les lymphocytes T CD4 s'est développé à cause de la place centrale qu'occupent ces cellules dans les réponses immunitaires. L'identification d'épitopes présentés par des molécules du CMH de classe II dérivés d'un grand nombre d'antigènes tumoraux, ainsi que le développement de techniques permettant de suivre les réponses immunitaires, offre des opportunités pour étudier de manière quantitative et qualitative les lymphocytes T CD4 spécifiques pour un antigène particulier chez des patients cancéreux. De plus, ces épitopes permettent d'induire des réponses médiées par les lymphocytes T CD4 et CD8 chez ces mêmes patients. Dans ce travail, notre premier but était de valider l'utilisation de multimères formés par des complexes peptide:molécules de CMH de class II (pCMH II) pour quantifier la réponse des cellules T CD4 dirigée contre l'épitope HA307-319 dérivé de la protéine hémaglutinine du virus de la grippe et présenté par HLA-DRB1*0401. En analysant des échantillons provenant de volontaires sains ayant reçus un vaccin contre la grippe, nous avons pu démontrer une expansion et une activation transitoires des lymphocytes T CD4 spécifiques pour le peptide HA307-319 après vaccination. De plus, les multimères pCMH II nous ont permis d'analyser plus en détails hétérogénéité des cellules T CD4 spécifiques pour le peptide HA307-319 présents dans le sang périphérique d'individus sains. Par la suite, notre but a été d'analyser les réponses des lymphocytes T CD4 spécifiques pour l'antigène Melan-A chez des patients atteints de mélanome métastatique. Nous avons tout d'abord démontré la présence de cellules T CD4 spécifiques pour l'épitope Melan-A51-73, présenté par HLA-DRBl*0401, qui avait déjà été préalablement décrit. Ensuite, nous avons décrit et caractérisé 2 nouveaux peptides issus de Melan-A qui sont présentés aux cellules T CD4 par différentes molécules du CMH de clans II. Des cellules spécifiques pour ces deux épitopes ont été trouvées chez 9/ 16 patients analysés. De plus, des multimères pCMH II chargés avec un des épitopes nous ont permis de détecter ex vivo des lymphocytes T CD4 spécifiques pour Melan-A dans le sang périphérique d'un patient atteint de mélanome. Mis ensemble, tous ces résultats suggèrent une potentielle utilisation des multimères pCMH II pour analyser en détail les lymphocytes T CD4 spécifiques d'antigènes définis. Cependant, le suivi ex vivo de telles cellules ne semble être possible que dans des cas bien particuliers. Néanmoins, les nouveaux épitopes issus de Melan-A et présentés par des molécules du CMH de classe II que nous avons décrits dans cette étude aideront à étudier plus en détails les lymphocytes T CD4 spécifiques pour Melan-A chez des patients atteints de mélanome, un sujet d'étude sur lequel peu de résultats sont à ce jour disponibles. Summary Attempts to develop cancer vaccines based on molecularly defined tumorassociated antigens were initiated more than 10 years ago. Apart from CTLmediated anti-tumor immunity, interests are. now focused on CD4 T cells that are central players of immune responses. The identification of MHC class-II-restricted epitopes from numerous tumor antigens together with the development of monitoring tools offers the opportunity to quantitatively and qualitatively study antigen-specific CD4 T lymphocytes in cancer patients and to induce both CTL and T helper responses in cancer patients. In this work, we first aimed at validating the use of peptide:MHC class II complex (pMHC II) multimers to quantitate the CD4 T cell response against the hemagglutinin-derived epitope HAso~-si9 from influenza virus presented by HLA-DRBl*0401. By analysing samples from healthy volunteers vaccinated with ananti-influenza vaccine, we could demonstrate a transient expansion and activation of HA-specific CD4 T cells after treatment. Moreover, pMHC II multimers helped us to study the heterogeneity of HAspecific CD4 T cells found in peripheral blood of healthy individuals. Then, we aimed to analyse Melan-A-specific CD4 T cell responses in metastatic melanoma patients. We first demonstrated the presence of CD4 T cells specific for the previously described Melan-A51_73 epitope presented by HLA-DRB 1 *0401 in peripheral blood of those patients. Second, we described and characterised 2 new Melan-A-derived peptides that are presented by different MHC II molecules to CD4 T cells. Specific cells for these epitopes were found in 9/ 16 rnelánoma patients analysed. In addition, pMHC II multimers loaded with one of the two epitopes allowed us to detect ex vivo Melan-A-specific CD4 T cells in peripheral blood of a melanoma patient. Together, these results suggest a potential use of pMHC II multimers in analysing in detail antigen-specific CD4 T cells. However, ex vivo monitoring of such cells will be possible only in particular conditions. Nevertheless, the new Melan-A-derived MHC II-restricted epitopes described here will help to study in more detail Melan-A-specific CD4 T cells in melanoma patients, a field where only scarce data are available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fifteen human melanoma cells lines were tested by an antibody-binding radioimmunoassay using a monoclonal antibody (A12) directed against the common acute lymphoblastic leukemia antigen (CALLA). Cells from six melanoma lines were found to react with this antibody. The level of antigen and the percentage of positive cells in these six melanoma lines showed wide variation, as demonstrated by analysis in the fluorescence-activated cell sorter (FACS). Immunoprecipitation of solubilized 125I-labeled membrane proteins from CALLA positive melanoma cells with A12 monoclonal antibody revealed a major polypeptide chain with an apparent m.w. of 100,000 daltons, characteristic for CALLA as determined on SDS-polyacrylamide gel electrophoresis. The expression of CALLA on MP-6 melanoma cells was modulated when the cells were cultured in the presence of A12 antibody. Reexpression of CALLA on these cells occurred within 5 days after transfer of the modulated cells into medium devoid of monoclonal antibody.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

B cells undergo a complex series of maturation and selection steps in the bone marrow and spleen during differentiation into mature immune effector cells. The tumor necrosis factor (TNF) family member B cell activating factor of the TNF family (BAFF) (BLyS/TALL-1) plays an important role in B cell homeostasis. BAFF and its close homologue a proliferation-inducing ligand (APRIL) have both been shown to interact with at least two receptors, B cell maturation antigen (BCMA) and transmembrane activator and cyclophilin ligand interactor (TACI), however their relative contribution in transducing BAFF signals in vivo remains unclear. To functionally inactivate both BAFF and APRIL, mice transgenic for a soluble form of TACI were generated. They display a developmental block of B cell maturation in the periphery, leading to a severe depletion of marginal zone and follicular B2 B cells, but not of peritoneal B1 B cells. In contrast, mice transgenic for a soluble form of BCMA, which binds APRIL, have no detectable B cell phenotype. This demonstrates a crucial role for BAFF in B cell maturation and strongly suggests that it signals via a BCMA-independent pathway and in an APRIL-dispensable way.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some patients infected with human immunodeficiency virus (HIV) who are experiencing antiretroviral treatment failure have persistent improvement in CD4+ T cell counts despite high plasma viremia. To explore the mechanisms responsible for this phenomenon, 2 parameters influencing the dynamics of CD4+ T cells were evaluated: death of mature CD4+ T cells and replenishment of the CD4+ T cell pool by the thymus. The improvement in CD4+ T cells observed in patients with treatment failure was not correlated with spontaneous, Fas ligand-induced, or activation-induced T cell death. In contrast, a significant correlation between the improvement in CD4+ T cell counts and thymic output, as assessed by measurement of T cell receptor excision circles, was observed. These observations suggest that increased thymic output contributes to the dissociation between CD4+ T cell counts and viremia in patients failing antiretroviral therapy and support a model in which drug-resistant HIV strains may have reduced replication rates and pathogenicity in the thymus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paradoxical coexistence of spontaneous tumor antigen-specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1-specific CD8(+) T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1-specific CD8(+) T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1(+) NY-ESO-1-specific CD8(+) T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3(+)PD-1(+) NY-ESO-1-specific CD8(+) T cells are more dysfunctional than Tim-3(-)PD-1(+) and Tim-3(-)PD-1(-) NY-ESO-1-specific CD8(+) T cells, producing less IFN-γ, TNF, and IL-2. Tim-3-Tim-3L blockade enhanced cytokine production by NY-ESO-1-specific CD8(+) T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3-Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1-specific CD8(+) T cells upon prolonged antigen stimulation and acted in synergy with PD-1-PD-L1 blockade. Collectively, our findings support the use of Tim-3-Tim-3L blockade together with PD-1-PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We previously reported that hepatitis B virus (HBV) e antigen (HBeAg) inhibits production of interleukin 6 by suppressing NF-κB activation. NF-κB is known to be activated through receptor-interacting serine/threonine protein kinase 2 (RIPK2), and we examined the mechanisms of interleukin 6 regulation by HBeAg. HBeAg inhibits RIPK2 expression and interacts with RIPK2, which may represent 2 mechanisms through which HBeAg blocks nucleotide-binding oligomerization domain-containing protein 1 ligand-induced NF-κB activation in HepG2 cells. Our findings identified novel molecular mechanisms whereby HBeAg modulates intracellular signaling pathways by targeting RIPK2, supporting the concept that HBeAg could impair both innate and adaptive immune responses to promote chronic HBV infection.