922 resultados para Sub-lattices
Resumo:
Type Ia supernovae are thought to result from thermonuclear explosions of carbong'oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of 0.9M. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M to 0.9M. © 2010 Macmillan Publishers Limited. All rights reserved.
Resumo:
Background and Purpose: The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility.
Experimental Approach: KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors.
Key Results: KCNQ subtypes 1-5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20M) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity.
Conclusions and Implications: These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder.
Resumo:
Aggregation of gold nanoparticles with rigid cucurbit[5]uril molecules generates fixed inter-particle separations of 0.91 nm. These nanoparticle assemblies possess discrete plasmonic modes which elucidate nanoscale growth and serve as molecular-recognition based SERS substrates.
Resumo:
The solid-state polymorphism of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], has been investigated via low-temperature and high-pressure crystallisation experiments. The samples have been characterised by single-crystal X-ray diffraction, optical microscopy and Raman spectroscopy. The solid-state phase behaviour of the compound is confirmed and clarified with respect to previous phase diagrams. The structures of the previously reported gamma-form, which essentially exhibits a G'T cation conformation, as well as those of the elusive beta- and alpha-forms, are reported. Crystals of the beta-phase are twinned and the structure is heavily disordered; the cation conformation in this form is predominantly TT, though significant contributions from other less frequently encountered conformers are also observed at low temperature and high pressure. The cation conformation in the alpha-form is GT; the presence of the G'T conformer at 193 K in this phase can be eliminated on cooling to 100 K. Whilst X-ray structural data are overall in good agreement with previous interpretations based on Raman and NMR studies, they also reveal a more subtle interplay of intermolecular interactions, which give rise to a wider range of conformers than previously considered.
Resumo:
This study presents a solid-phase PCR (SP-PCR) for rapid detection, identification, and sub-typing of various Salmonella species, the major food-borne cause of salmonellosis. The target DNA is firstly amplified with PCR primers (one primer is labeled with fluorophores) in the liquid phase. Simultaneously on the solid phase, the amplified PCR amplicons interact with the nested DNA probes immobilized on the solid substrate as an array. If the immobilized probes match the sequence of the DNA templates they are extended by the polymerase and serve as template for the second strand elongation primed by the liquid phase primer thus generating new templates for the SP-PCR. After the reaction, PCR products labeled with fluorophores remain attached to the substrate and can be visualized directly by fluorescence readout devices. Using this method, S. enteritidis, S. typhimurium and S. dublin can be detected at the same time. The method offers several advantages over conventional multiplex PCR: less competition between different primer pairs thus increasing multiplexing capability, only single wavelength optical readout needed for the multiplexing detection, and less time-consuming owing to reduction of the post-PCR gel electrophoresis. The method will be useful for development of point-of-care devices for rapid detection and identification of Salmonella spp. A solid-phase PCR for rapid detection and identification of S. enteritidis, S. typhimurium and S. dublin is developed. The method offers advantages such as better multiplexing capability, only single wavelength optical readout needed, and less time-consuming.
Resumo:
This paper presents an Invariant Information Local Sub-map Filter (IILSF) as a technique for consistent Simultaneous Localisation and Mapping (SLAM) in a large environment. It harnesses the benefits of sub-map technique to improve the consistency and efficiency of Extended Kalman Filter (EKF) based SLAM. The IILSF makes use of invariant information obtained from estimated locations of features in independent sub-maps, instead of incorporating every observation directly into the global map. Then the global map is updated at regular intervals. Applying this technique to the EKF based SLAM algorithm: (a) reduces the computational complexity of maintaining the global map estimates and (b) simplifies transformation complexities and data association ambiguities usually experienced in fusing sub-maps together. Simulation results show that the method was able to accurately fuse local map observations to generate an efficient and consistent global map, in addition to significantly reducing computational cost and data association ambiguities.
Resumo:
Co3O4, Fe2O3 and a mixture of the two oxides Co–Fe (molar ratio of Co3O4/Fe2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 °C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O3 on the catalytic behaviour. The reforming activity over Fe2O3, while initially high, underwent fast deactivation. In comparison, over the Co–Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co–Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co–Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield.