977 resultados para Structures rayons X
Resumo:
We report on an experimental study of the structures presented by urethane/urea elastomeric films without and with ferromagnetic nanoparticles incorporated. The study is made by using the X-ray diffraction, nuclear magnetic resonance (NMR), optical, atomic and magnetic force (MFM) microscopy techniques, and mechanical assays. The structure of the elastomeric matrix is characterized by a distance of 0.46 nm between neighboring molecular segments, almost independent on the stretching applied. The shear casting performed in order to obtain the elastomeric films tends to orient the molecules parallel to the flow direction thus introducing anisotropy in the molecular network which is reflected on the values obtained for the orientational order parameter and its increase for the stretched films. In the case of nanoparticles-doped samples, the structure remains nearly unchanged although the local order parameter is clearly larger for the undoped films. NMR experiments evidence modifications in the molecular network local ordering. Micrometer size clusters were observed by MFM for even small concentration of magnetic particles.
Resumo:
We use QCD sum rules (QCDSR) to calculate the width of the radiative decay of the meson X(3872), assumed to be a mixture between charmonium and exotic molecular [c (q) over bar][q (c) over bar] states with J(PC) = 1(++). We find that in a small range for the values of the mixing angle, 5 degrees <= theta <= 13 degrees, we get the branching ratio Gamma(X -> J/psi gamma)/Gamma(X -> J/psi pi(+)pi(-)) = 0.19 +/- 0.13, which is in agreement, with the experimental value. This result is compatible with the analysis of the mass and decay width of the mode J/psi(n pi) performed in the same approach.
Resumo:
The structure of a complex between hydrated DNA and a non-cationic lipid is studied, including its phase diagram. The complex is spontaneously formed by adding DNA fragments (ca. 150 base pairs in length) to non-cationic lipids and water. The self-assembly process often leads to highly ordered structures. The structures were studied by combining X-ray scattering, fluorescence and polarized microscopy, as well as freeze-fracture experiments with transmission electron microscopy. We observe a significant increase of the smectic order as DNA is incorporated into the water layers of the lamellar host phase, and stabilization of single phase domains for large amounts of DNA. The effect of confinement on DNA ordering is investigated by varying the water content, following three dilution lines. A rich polymorphism is found, ranging from weakly correlated DNA-DNA in-plane organizations to highly ordered structures, where transmembrane correlations lead to the formation of columnar rectangular and columnar hexagonal superlattices of nucleotides embedded between lipid lamellae. From these observations, we suggest that addition of DNA to the lamellar phase significantly restricts membrane fluctuations above a certain concentration and helps the formation of the lipoplex. The alteration of membrane steric interactions, together with the appearance of interfacial interactions between membranes and DNA molecules may be a relevant mechanism for the emergence of highly ordered structures in the concentrated regime.
Resumo:
We use QCD sum rules to test the nature of the meson X(3872), assumed to be a mixture between charmonium and exotic molecular [c (q) over bar][q (c) over bar] states with J(PC) = 1(++). We find that there is only a small range for the values of the mixing angle theta that can provide simultaneously good agreement with the experimental value of the mass and the decay width, and this range is 5(0) <= theta <= 3(0). In this range we get m(X) = (3.77 +/- 0.18) GeV and Gamma(X -> J/psi pi(+)pi(-)) = (9.3 +/- 6.9) MeV, which are compatible, within the errors, with the experimental values. We, therefore, conclude that the X(3872) is approximately 97% a charmonium state with 3% admixture of similar to 88% D(0)D*(0) molecule and similar to 12% D(+)D*(-) molecule.
Resumo:
An x-ray diffraction method, based on the excitation of a surface diffracted wave, is described to investigate the capping process of InAs/GaAs (001) quantum dots (QDs). It is sensitive to the tiny misorientation of (111) planes at the surface of the buffer layer on samples with exposed QDs. After capping, the misorientation occurs in the cap-layer lattice faceting the QDs and its magnitude can be as large as 10 degrees depending on the QDs growth rates, probably due to changes in the size and shape of the QDs. A slow strain release process taking place at room temperature has also been observed by monitoring the misorientation angle of the (111) planes.
Resumo:
The combined effects of concentration and pH on the conformational states of bovine serum albumin (BSA) are investigated by small-angle x-ray scattering. Serum albumins, at physiological conditions, are found at concentrations of similar to 35-45 mg/mL (42 mg/mL in the case of humans). In this work, BSA at three different concentrations (10, 25, and 50 mg/mL) and pH values (2.0-9.0) have been studied. Data were analyzed by means of the Global Fitting procedure, with the protein form factor calculated from human serum albumin (HSA) crystallographic structure and the interference function described, considering repulsive and attractive interaction potentials within a random phase approximation. Small-angle x-ray scattering data show that BSA maintains its native state from pH 4.0 up to 9.0 at all investigated concentrations. A pH-dependence of the absolute net protein charge is shown and the charge number per BSA is quantified to 10(2), 8(l), 13(2), 20(2), and 26(2) for pH values 4.0, 5.4, 7.0, 8.0, and 9.0, respectively. The attractive potential diminishes as BSA concentration increases. The coexistence of monomers and dimers is observed at 50 mg/mL and pH 5.4, near the BSA isoelectric point. Samples at pH 2.0 show a different behavior, because BSA overall shape changes as a function of concentration. At 10 mg/mL, BSA is partially unfolded and a strong repulsive protein-protein interaction occurs due to the high amount of exposed charge. At 25 and 50 mg/mL, BSA undergoes some refolding, which likely results in a molten-globule state. This work concludes by confirming that the protein concentration plays an important role on the pH-unfolded BSA state, due to a delicate compromise between interaction forces and crowding effects.
Resumo:
We consider black p-brane solutions of the low-energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that tensorial perturbations obtained via a gauge-invariant formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically, these solutions typically reduce to a AdSd((p+2)) x Sd((8-p)) space which, in the framework of Maldacena's conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a (p+1)-dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge theories.
Resumo:
Oxides RNiO(3) (R - rare-earth, R not equal La) exhibit a metal-insulator (MI) transition at a temperature T(MI) and an antiferromagnetic (AF) transition at T(N). Specific heat (C(P)) and anelastic spectroscopy measurements were performed in samples of Nd(1-x)Eu(x)NiO(3), 0 <= x <= 0.35. For x - 0, a peak in C(P) is observed upon cooling and warming at essentially the same temperature T(MI) - T(N) similar to 195 K, although the cooling peak is much smaller. For x >= 0.25, differences between the cooling and warming curves are negligible, and two well defined peaks are clearly observed: one at lower temperatures that define T(N), and the other one at T(MI). An external magnetic field of 9 T had no significant effect on these results. The elastic compliance (s) and the reciprocal of the mechanical quality factor (Q(-1)) of NdNiO(3), measured upon warming, showed a very sharp peak at essentially the same temperature obtained from C(P), and no peak is observed upon cooling. The elastic modulus hardens below T(MI) much more sharply upon warming, while the cooling and warming curves are reproducible above T(MI). Conversely, for the sample with x - 0.35, s and Q(-1) curves are very similar upon warming and cooling. The results presented here give credence to the proposition that the MI phase transition changes from first to second order with increasing Eu doping. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3549615]
Resumo:
Measurements are presented of the complex dynamic Young's modulus of NdNiO(3) and Nd(0.65)Eu(0.35)NiO(3) through the metal-insulator transition (MIT). Upon cooling, the modulus presents a narrow dip at the MIT followed by an abrupt stiffening of similar to 6%. The anomaly is reproducible between cooling and heating in Nd(0.65)Eu(0.35)NiO(3) but appears only as a slow stiffening during cooling in undoped NdNiO(3), in conformance with the fact that the MIT in RNiO(3) changes from strongly first order to second order when the mean R size is decreased. The elastic anomaly seems not to be associated with the antiferromagnetic transition, which is distinct from the MIT in Nd(0.65)Eu(0.35)NiO(3). It is concluded that the steplike stiffening is due to the disappearance or freezing of dynamic Jahn-Teller (JT) distortions through the MIT, where the JT active Ni(3+) is disproportionated into alternating Ni(3+delta) and Ni(3-delta). The fluctuating octahedral JT distortion necessary to justify the observed jump in the elastic modulus is estimated as similar to 3% but does not have a role in determining the MIT, since the otherwise-expected precursor softening is not observed.
Resumo:
We have performed a systematic study of the magnetic properties of a series of ferrimagnetic nanoparticles of Mg(x)Fe(3-x)O(4) (0.8 <= x <= 1.5) prepared by the combustion reaction method. The magnetization data can be well fitted by Bloch's law with T(3/2). Bloch's constant B determined from the fitting procedure was found to increase with Mg content x from similar to 3.09 X 10(-5) K(-3/2) for x = 0.8 to 6.27 X 10(-5) K(-3/2) for x=1.5. The exchange integral J(AB) and the spin-wave stiffness constant D of Mg(x)Fe(3-x)O(4) nanoparticles were also determined as similar to 0.842 and 0.574 meV and 296 and 202 meV angstrom(2) for specimens with x=0.8 and 1.5, respectively. These results are discussed in terms of cation redistribution among A and B sites on these nanostructured spinel ferrites. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3359709]
Resumo:
A systematic study of magnetoresistance and dc magnetization was conducted in polycrystalline (Ru(1-x)Ir(x))Sr(2)GdCu(2)O(8) [(Ru,Ir)-1212] compounds, for 0 <= x <= 0.15. We found that a deviation from linearity in the normal-state electrical resistivity (rho) curves for temperatures below the magnetic transition temperature T(M) < 130 K can be properly described by a logarithmic term. The prefactor C(x, H) of this anomalous ln T contribution to rho(T) increases linearly with the Ir concentration, and diminishes rapidly with increasing applied magnetic field up to H approximate to 4 T, merging with the C(0,H) curve at higher magnetic fields. Correlation with magnetic susceptibility measurements supports a scenario of local perturbations in the orientation of Ru moments induced in the neighborhood of the Ir ions, therefore acting as scattering centers. The linear dependence of the prefactor C(x,H=0) and the superconducting transition temperature T(SC) on x points to a common source for the resistivity anomaly and the reduction in T(SC), suggesting that the CuO(2) and RuO(2) layers are not decoupled.
Resumo:
The local site symmetry of Ce(3+) ions in the diluted magnetic semiconductors Pb(1-x)Ce(x)A (A=S, Se, and Te) has been investigated by electron-paramagnetic resonance (EPR). The experiments were carried out on single crystals with cerium concentration x ranging from 0.001 to 0.035. The isotropic line due to Ce(3+) ions located at the substitutional Pb cation site with octahedral symmetry was observed for all the studied samples. We determined the effective Lande factors to be g=1.333, 1.364, and 1.402 for A=S, Se, and Te, respectively. The small difference with the predicted Lande factor g of 10/7 for the Gamma(7) (J=5/2) ground state was attributed to crystal-field admixture. In addition, EPR lines from Ce(3+) ions located at sites with small distortion from the original octahedral symmetry were also observed. Two distinct sites with axial distortion along the < 001 > crystallographic direction were identified and a third signal in the spectrum was attributed to sites with the cubic symmetry distorted along the < 110 > direction. The distortion at these distinct Ce sites is attributed to Pb lattice vacancies near the cerium ions that compensate for its donor activity.
Resumo:
Magnetoresistance measurements in p-type Pb(1-x)Eu(x)Te alloys, for x varying from 0% up to 5%, have been used to investigate localization and antilocalization effects. These are attributed to both the spin-orbit scattering and to the large Zeeman splitting present in these alloys due to the large values of the effective Lande g factor. The magnetoresistance curves are analyzed using the model of Fukuyama and Hoshino, which takes into account the spin-orbit and Zeeman scattering mechanisms. The spin-orbit scattering time is found to be independent of the temperature, while the inelastic-scattering time increases with decreasing temperature suggesting the electron-phonon interaction as the main scattering mechanism.
Resumo:
Here we use magnetic resonant x-ray diffraction to study the magnetic order in a 1.5 mu m EuTe film grown on (111) BaF(2) by molecular-beam epitaxy. At Eu L(II) and L(III) absorption edges, a resonant enhancement of more than two orders was observed for the sigma ->pi(') diffracted intensity at half-order reciprocal-lattice points, consistent with the magnetic character of the scattering. We studied the evolution of the (1/21/21/2) magnetic reflection with temperature. When heating toward the Neel temperature (T(N)), the integrated intensity decreased monotonously and showed no hysteresis upon cooling again, indicating a second-order phase transition. A power-law fit to the magnetization versus temperature curve yielded T(N)=9.99(1) K and a critical exponent beta=0.36(1), which agrees with the renormalization theory results for three-dimensional Heisenberg magnets. The fits to the sublattice magnetization dependence with temperature, disregarding and considering fourth-order exchange interactions, evidenced the importance of the latter for a correct description of magnetism in EuTe. A value of 0.009 was found for the (2j(1)+j(2))/J(2) ratio between the Heisenberg J(2) and fourth-order j(1,2) exchange constants. The magnetization curve exhibited a round-shaped region just near T(N) accompanied by an increase in the magnetic peak width, which was attributed to critical scattering above T(N). The comparison of the intensity ratio between the (1/21/21/2) and the (1/21/21/2) magnetic reflections proved that the Eu(2+) spins align within the (111) planes, and the azimuthal dependence of the (1/21/21/2) magnetic peak is consistent with the model of equally populated S domains.
Resumo:
The results on the measurement of electrical conductivity and magnetoconductivity of a GaAs double quantum well between 0.5 and 1.1 K are reported. The zero magnetic-field conductivity is well described from the point of view of contributions made by both the weak localization and electron-electron interaction. At low field and low temperature, the magnetoconductivity is dominated by the weak localization effect only. Using the weak localization method, we have determined the electron dephasing times tau(phi) and tunneling times tau(t). Concerning tunneling, we concluded that tau(t) presents a minimum around the balance point; concerning dephasing, we observed an anomalous dependence on temperature and conductivity (or elastic mean free path) of tau(phi). This anomalous behavior cannot be explained in terms of the prevailing concepts for the electron-electron interaction in high-mobility two-dimensional electron systems.