924 resultados para Spores germination


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seeds in the field experience wet-dry cycling that is akin to the well-studied commercial process of seed priming in which seeds are hydrated and then re-dried to standardise their germination characteristics. To investigate whether the persistence (defined as in situ longevity) and antioxidant capacity of seeds are influenced by wet-dry cycling, seeds of the global agronomic weed Avena sterilis ssp. ludoviciana were subjected to (1) controlled ageing at 60% relative humidity and 53.5°C for 31 days, (2) controlled ageing then priming, or (3) ageing in the field in three soils for 21 months. Changes in seed viability (total germination), mean germination time, seedling vigour (mean seedling length), and the concentrations of the glutathione (GSH) / glutathione disulphide (GSSG) redox couple were recorded over time. As controlled-aged seeds lost viability, GSH levels declined and the relative proportion of GSSG contributing to total glutathione increased, indicative of a failing antioxidant capacity. Subjecting seeds that were aged under controlled conditions to a wet-dry cycle (to −1 MPa) prevented viability loss and increased GSH levels. Field-aged seeds that underwent numerous wet-dry cycles due to natural rainfall maintained high viability and high GSH levels. Thus wet-dry cycles in the field may enhance seed longevity and persistence coincident with re-synthesis of protective compounds such as GSH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quambalaria spp. are eucalypt leaf and shoot pathogens of growing global importance, yet virtually nothing is known regarding the manner in which they infect and colonize their hosts. A study of the infection process of Q. pitereka and Q.eucalypti on Corymbia and Eucalyptus species was thus undertaken using light, scanning and transmission electron microscopy after artificial inoculation. Conidial germination was triggered when relative humidity levels exceeded 90% and commenced within 2 h in the presence of free water. Light reduced germination but did not prevent germination from occurring. Conidial germination and hyphal growth occurred on the upper and lower leaf surfaces with penetration occurring via the stomata or wounds on the leaf surface or juvenile stems. There was no evidence of direct penetration of the host. Following penetration through the stomata, Q. pitereka and Q. eucalypti hyphae grew only intercellularly without the formation of haustoria or interaction apparatus, which is characteristic of the order Microstromatales. Instead, the presence of an interaction zone is demonstrated in this paper. Conidiophores arose through stomatal openings producing conidia 7 days after infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the addition of different concentratons of cystine and cysteine on sporulation and parasporal crystal formation in Bacillus thuringiensis var. thuringiensis was studied. The effect was well pronounced when the systine/cysteine additions were made after the stationary phase. Heat stable spores and crystals were formed when the culture was provided with a low concentration of cystine/cysteine (0.05 per cent w/v). At a moderate concentration of cystine or cysteine (0.15%), only heat labile spores were formed without the production of the crystal. When the cystine/cysteine concentration was high (0.25%), spore and crystal formation were completely inhibited. Partial reversal of inhibition of sporulation was brought about by sodium sulphate or zinc sulphate and lead, copper, cadmium or cobalt acetate at 0.2 mM or at 0.2% of sodium or potassium pyruvate, citrate, isaconitate, oxalosuccinate, ∝ -keto-glutarate, succinate, fumarate, malate, or oxalacetate. Glutamate (0.2%) overcame the inhibitory effect of cystine/cysteine completely. The structural changes observed using phase contrast microscopy were dependent upon the concentration of cystine/cysteine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detecting spores with UAV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Review of the biology of the Australian weed Baccharis halimifolia. This paper reviews the morphology, geographical distribution, habitat, growth and development, reproduction (flowering, seed production and dispersal, and seed germination), hybrids, population dynamics, importance (detrimental and beneficial), legislation, and control (using mechanical methods, herbicides and biological control agents/natural enemies) of an invasive alien species, B. shall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid change in climate is challenge for the adaptation of forest trees in the future. In wind pollinated tree species pollen mediated long distance gene flow may provide alleles that are (pre)adapted to a future climate. In order to examine the long distance pollen flow in Scots pine (Pinus sylvestris L.), we measured the amount and viability of airborne pollen and flowering phenology in central, northern, and northernmost Finland during four years. Viable airborne pollen grains were detected during female flowering and before local pollen shedding in all study sites. The situation when there was nonlocal pollen in the air lasted from one to four days depending on the year and study site. The amount of nonlocal airborne pollen varied also between years and study sites, the total amount of nonlocal viable pollen in the air was 2.3% from all detected viable pollen grains. The effect of pollen origin on seeds siring ability was studied with artificial pollination experiments. Pollen genotypes originating from southern Finland sired 76% and 48 % of the analysed seeds in competition studies where both pollen origin were introduced simultaneously into the female strobili. We examined the importance of arrival order of pollen grains in to the strobili in a study where pollen genotypes of different origin were introduced in two hours interval. Northern genotypes sired 76% of the analysed seeds when it was injected first, but in the "southern first" experiment both pollen types sired equal amount of seeds. The first pollen grain in the pollen chamber do not always fertilizes the ovum, instead there likely is more complex way of competition between pollen grains. To examine chemically mediated pollen-pollen interactions we conducted in vitro germination experiment where different pollen genotypes had chemical but not physical contact. Both positive and negative effects of interactions were found. We found highly negative effects in germinability of northern pollen grains when they were germinating with southern pollen, and increase in the germinability of southern pollen. There were no variation in the size of the dry pollen grains between pollen origins, and minor variation between different genotypes. After hydration and germination northern pollen grains were larger than southern pollen. Pollen genotypes having high hydration rates had low germinability and tube growth rate, however, germinated pollen grains were larger in size than nongerminated. This supports the suggestion that the early germination and growth of pollen tube is dependent on pollen storage materialsand less dependent on water intake and hydration. Long distance pollen movements and good competition ability of southern pollen makes gene flow possible, although rising temperature and timing of pollen movements may affect pollen competition and the amount of gene flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grain dormancy provides protection against pre-harvest sprouting (PHS) in cereals. Composite interval mapping and association analyses were performed to identify quantitative trait loci (QTL) contributing grain dormancy in a doubled haploid (DH) barley population (ND24260 x Flagship) consisting of 321 lines genotyped with DArT markers. Harvest-ripe grain collected from three field experiments was germinated over a 7-day period to determine a weighted germination index for each line. DH lines displaying moderate to high levels of grain dormancy were identified; however, both parental lines were non-dormant and displayed rapid germination within the first two days of testing. Genetic analysis identified two QTL on chromosome 5H that were expressed consistently in each of the three environments. One QTL (donated by Flagship) was located close to the centromeric region of chromosome 5H (qSDFlag), accounting for up to 15% of the phenotypic variation. A second QTL with a larger effect (from ND24260) was detected on chromosome 5HL (qSDND), accounting for up to 35% of the phenotypic variation. qSDFlag and qSDND displayed an epistatic interaction and DH lines that had the highest levels of grain dormancy carried both genes. We demonstrate that qSDND in the ND24260 9 Flagship DH population is positioned proximal and independent to the well-characterised SD2 region that is associated with both high levels of dormancy and inferior malt quality. This indicates that it should be possible to develop cultivars that combine acceptable malting quality and adequate levels of grain dormancy for protection against PHS by utilizing these alternate QTL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor (L.) Moench) is grown as a dryland crop in semiarid subtropical and tropical environments where it is often exposed to high temperatures around flowering. Projected climate change is likely to increase the incidence of exposure to high temperature, with potential adverse effects on growth, development and grain yield. The objectives of this study were to explore genetic variability for the effects of high temperature on crop growth and development, in vitro pollen germination and seed-set. Eighteen diverse sorghum genotypes were grown at day : night temperatures of 32 : 21 degrees C (optimum temperature, OT) and 38 : 21 degrees C (high temperature, HT during the middle of the day) in controlled environment chambers. HT significantly accelerated development, and reduced plant height and individual leaf size. However, there was no consistent effect on leaf area per plant. HT significantly reduced pollen germination and seed-set percentage of all genotypes; under HT, genotypes differed significantly in pollen viability percentage (17-63%) and seed-set percentage (7-65%). The two traits were strongly and positively associated (R-2 = 0.93, n = 36, P < 0.001), suggesting a causal association. The observed genetic variation in pollen and seed-set traits should be able to be exploited through breeding to develop heat-tolerant varieties for future climates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naked oat (Avena sativa f.sp. nuda L.) is the highest quality cereal in northern growing conditions. However the cultivation area of naked oat is remarkably small. Major challenges for naked oat production are to observe its nakedness. The caryopsis of naked oat is sensitive to mechanical damage at harvest, especially at high grain moisture content. The greater the grain moisture content of naked oat at harvest, the more loses of germination capacity was caused by threshing. For producing high quality naked oat seed, it is recommended that harvesting be done at as low grain moisture content as possible. However, if this is not possible, better germination can be ensure with gentle harvest by reducing the cylinder speed. In spite of conventional oat s excellent fat and amino acid composition in animal feed use, as far as nutritional value is concerned, the total energy yield of oat is weaker than other cereals because of the hulls. Also with naked oat the dehulling is not complete, while hull content on different cultivars mostly varied between one to six percent. In addition to genotype, environmental conditions markedly control the expression of nakedness. Thresher settings had only limited effects on hull content. The function of hulls is to protect the groat, but this was confirmed only for Finnish, small grain, cultivar Lisbeth. The oat kernel is generally covered with fine silky hairs termed trichomes. The trichomes of naked oat are partly lost during threshing and handling of grains. Trichomes can cause itchiness in those handling the grains and also accumulate and form fine dust and can block-up machinery. The cultivars differed considerably in pubescence. Some thresher settings, including increased cylinder speed, slightly increased grain polishing such that grains had some areas completely free of trichomes. Adjusting thresher settings was generally not an efficient means of solving the problems associated with naked oat trichomes. The main differences in cultivation costs between naked and conventional oat lie in the amount of seeds required and the drying costs. The main differences affecting the economic result lie in market prices, yield level and feed value. The results indicate that naked oat is financially more profitable than conventional oat, when the crop is sold at a specific price at all yield levels and when the crop is used as feed at highest yield level. At lower yield levels, conventional oat is, in spite of its lower feed value, the more profitable option for feed use. Dehulled oat did not achieve the same economic result as naked oat, as the cost of dehulling, including the hull waste, was considerable. According to this study naked oat can be cultivated successfully under northern conditions, when taking into consideration the soft, naked grain through cultivation chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The average daily intake of folate, one of the B vitamins, falls below recommendations among the Finnish population. Bread and cereals are the main sources of folate, rye being the most significant single source. Processing is a prerequisite for the consumption of whole grain rye; however, little is known about the effect of processing on folates. Moreover, data on the bioavailability of endogenous cereal folates are scarce. The aim of this study was to examine the variation in as well as the effect of fermentation, germination, and thermal processes on folate contents in rye. Bioavailability of endogenous rye folates was investigated in a four-week human intervention study. One of the objectives throughout the work was to optimise and evaluate analytical methods for determining folate contents in cereals. Affinity chromatographic purification followed by high-performance liquid chromatography (HPLC) was a suitable method for analysing cereal products for folate vitamers, and microbiological assay with Lactobacillus rhamnosus reliably quantified the total folate. However, HPLC gave approximately 30% lower results than the microbiological assay. The folate content of rye was high and could be further increased by targeted processing. The vitamer distribution of whole grain rye was characterised by a large proportion of formylated vitamers followed by 5-methyltetrahydrofolate. In sourdough fermentation of rye, the studied yeasts synthesized and lactic acid bacteria mainly depleted folate. Two endogenous bacteria isolated from rye flour were found to produce folate during fermentation. Inclusion of baker s yeast in sourdough fermentation raised the folate level so that the bread could contain more folate than the flour it was made of. Germination markedly increased the folate content of rye, with particularly high folate concentrations in hypocotylar roots. Thermal treatments caused significant folate losses but the preceding germination compensated well for the losses. In the bioavailability study, moderate amounts of endogenous folates in the form of different rye products and orange juice incorporated in the diet improved the folate status among healthy adults. Endogenous folates from rye and orange juice showed similar bioavailability to folic acid from fortified white bread. In brief, it was shown that the folate content of rye can be enhanced manifold by optimising and combining food processing techniques. This offers some practical means to increase the daily intake of folate in a bioavailable form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standards have been placed to regulate the microbial and preservative contents to assure that foods are safe to the consumer. In a case of a food-related disease outbreak, it is crucial to be able to detect and identify quickly and accurately the cause of the disease. In addition, for every day control of food microbial and preservative contents, the detection methods must be easily performed for numerous food samples. In this present study, quicker alternative methods were studied for identification of bacteria by DNA fingerprinting. A flow cytometry method was developed as an alternative to pulsed-field gel electrophoresis, the golden method . DNA fragment sizing by an ultrasensitive flow cytometer was able to discriminate species and strains in a reproducible and comparable manner to pulsed-field gel electrophoresis. This new method was hundreds times faster and 200,000 times more sensitive. Additionally, another DNA fingerprinting identification method was developed based on single-enzyme amplified fragment length polymorphism (SE-AFLP). This method allowed the differentiation of genera, species, and strains of pathogenic bacteria of Bacilli, Staphylococci, Yersinia, and Escherichia coli. These fingerprinting patterns obtained by SE-AFLP were simpler and easier to analyze than those by the traditional amplified fragment length polymorphism by double enzyme digestion. Nisin (E234) is added as a preservative to different types of foods, especially dairy products, around the world. Various detection methods exist for nisin, but they lack in sensitivity, speed or specificity. In this present study, a sensitive nisin-induced green fluorescent protein (GFPuv) bioassay was developed using the Lactococcus lactis two-component signal system NisRK and the nisin-inducible nisA promoter. The bioassay was extremely sensitive with detection limit of 10 pg/ml in culture supernatant. In addition, it was compatible for quantification from various food matrices, such as milk, salad dressings, processed cheese, liquid eggs, and canned tomatoes. Wine has good antimicrobial properties due to its alcohol concentration, low pH, and organic content and therefore often assumed to be microbially safe to consume. Another aim of this thesis was to study the microbiota of wines returned by customers complaining of food-poisoning symptoms. By partial 16S rRNA gene sequence analysis, ribotyping, and boar spermatozoa motility assay, it was identified that one of the wines contained a Bacillus simplex BAC91, which produced a heat-stable substance toxic to the mitochondria of sperm cells. The antibacterial activity of wine was tested on the vegetative cells and spores of B. simplex BAC91, B. cereus type strain ATCC 14579 and cereulide-producing B. cereus F4810/72. Although the vegetative cells and spores of B. simplex BAC91 were sensitive to the antimicrobial effects of wine, the spores of B. cereus strains ATCC 14579 and F4810/72 stayed viable for at least 4 months. According to these results, Bacillus spp., more specifically spores, can be a possible risk to the wine consumer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbes have a decisive role in the barley-malt-beer chain. A major goal of this thesis was to study the relationships between microbial communities and germinating grains during malting. Furthermore, the study provided a basis for tailoring of malt properties with natural, malt-derived microbes. The malting ecosystem is a dynamic process, exhibiting continous change. The first hours of steeping and kilning were the most important steps in the process with regard to microbiological quality. The microbial communities consisting of various types of bacteria, yeasts and filamentous fungi formed complex biofilms in barley tissues and were well-protected. Inhibition of one microbial population within the complex ecosystem led to an increase of non-suppressed populations, which must be taken into account because a shift in microbial community dynamics may be undesirable. Both bacterial and fungal communities should be monitored simultaneously. Using different molecular approaches we showed that the diversity of microbes in the malting ecosystem was greater than expected. Even some new microbial groups were found in the malting ecosystem. Suppression of Gram-negative bacteria during steeping was advanategous for grain germination and malt brewhouse performance. Fungal communities including both filamentous fungi and yeasts significantly contributed to the production of microbial beta-glucanases and xylanases, and were also involved in proteolysis. Well-characterized lactic acid bacteria (Lactobacillus plantarum VTT E-78076 and Pediococcus pentosaceus VTT E-90390) proved to be an effective way of balancing the microbial communities in malting. Furthermore, they had positive effects on malt characteristics and notably improved wort separation. Previously the significance of yeasts in the malting ecosystem has been largely underestimated. This study showed that yeast community was an important part of the industrial malting ecosystem. Yeasts produced extracellular hydrolytic enzymes with a potentially positive contribution to malt processability. Furthermore, several yeasts showed strong antagonistic activity against field and storage moulds. Addition of a selected yeast culture (Pichia anomala VTT C-04565) into steeping restricted Fusarium growth and hydrophobin production and thus prevented beer gushing. Addition of P. anomala C565 into steeping water tended to retard wort filtration, but the filtration was improved when the yeast culture was combined with L. plantarum E76. The combination of different microbial cultures offers a possibility to use ther different properties, thus making the system more robust. Improved understanding of complex microbial communities and their role in malting enables a more controlled process management and the production of high quality malt with tailored properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corymbia species from different sections hybridize readily, with some of increasing economic importance to plantation forestry. This study explores the locations of reproductive barriers between interspecific Corymbia hybrids and investigates the reproductive success of a wide taxonomic range of C. torelliana hybrid crosses. Pollen, pistil and embryo development were investigated for four C. torelliana crosses (C. torelliana, C. citriodora subsp. citriodora, C. tessellaris and C. intermedia) using fluorescent and standard microscopy to identify the locations of interspecific reproductive isolating barriers. Corymbia torelliana was also crossed with 16 taxa, representing six of the seven Corymbia sections, both Corymbia subgenera and one species each from the related genera, Angophora and Eucalyptus. All crosses were assessed for capsule and seed yields. Interspecific C. torelliana hybridization was controlled by pre-zygotic reproductive isolating barriers inhibiting pollen adhesion to the stigma, pollen germination, pollen tube growth in the style and pollen tube penetration of the micropyle. Corymbia torelliana (subgenus Blakella, sect. Torellianae) was successfully hybridized with Corymbia species from subgenus Blakella, particularly C. citriodora subsp. citriodora, C. citriodora subsp. variegata, C. henryi (sect. Maculatae) and C. tessellaris (sect. Abbreviatae), and subgenus Corymbia, particularly C. clarksoniana and C. erythrophloia (sect. Septentrionales). Attempted intergeneric hybrids between C. torelliana and either Angophora floribunda or Eucalyptus pellita were unsuccessful. Corymbia hybrids were formed between species from different sections and subgenera, but not with species from the related genera Angophora or Eucalyptus. Reproductive isolation between the interspecific Corymbia hybrid crosses was controlled by early- and late-acting pre-zygotic isolating barriers, with reproductive success generally decreasing with increasing taxonomic distance between parent species. These findings support the monophyly of Corymbia and the close relationships of infrageneric clades. The hybridizing propensity of Corymbia species provides opportunities for breeding but suggests risks of environmental gene flow. © The Author 2012. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here the structures and properties of heat-stable, non-protein, and mammalian cell-toxic compounds produced by spore-forming bacilli isolated from indoor air of buildings and from food. Little information is available on the effects and occurrence of heat-stable non-protein toxins produced by bacilli in moisture-damaged buildings. Bacilli emit spores that move in the air and can serve as the carriers of toxins, in a manner similar to that of the spores of toxic fungi found in contaminated indoor air. Bacillus spores in food cause problems because they tolerate the temperatures applied in food manufacture and the spores later initiate growth when food storage conditions are more favorable. Detection of the toxic compounds in Bacillus is based on using the change in mobility of boar spermatozoa as an indicator of toxic exposure. GC, LC, MS, and nuclear magnetic resonance NMR spectroscopy were used for purification, detection, quantitation, and analysis of the properties and structures of the compounds. Toxicity and the mechanisms of toxicity of the compounds were studied using boar spermatozoa, feline lung cells, human neural cells, and mitochondria isolated from rat liver. The ionophoric properties were studied using the BLM (black-lipid membrane) method. One novel toxin, forming ion channels permeant to K+ > Na+ > Ca2+, was found and named amylosin. It is produced by B. amyloliquefaciens isolated from indoor air of moisture-damaged buildings. Amylosin was purified with an RP-HPLC and a monoisotopic mass of 1197 Da was determined with ESI-IT-MS. Furthermore, acid hydrolysis of amylosin followed by analysis of the amino acids with the GS-MS showed that it was a peptide. The presence of a chromophoric polyene group was found using a NMR spectroscopy. The quantification method developed for amylosin based on RP-HPLC-UV, using the macrolactone polyene, amphotericin B (MW 924), as a reference compound. The B. licheniformis strains isolated from a food poisoning case produced a lipopeptide, lichenysin A, that ruptured mammalian cell membranes and was purified with a LC. Lichenysin A was identified by its protonated molecules and sodium- and potassium- cationized molecules with MALDI-TOF-MS. Its protonated forms were observed at m/z 1007, 1021 and 1035. The amino acids of lichenysin A were analyzed with ESI-TQ-MS/MS and, after acid hydrolysis, the stereoisomeric forms of the amino acids with RP-HPLC. The indoor air isolates of the strain of B. amyloliquefaciens produced not only amylosin but also lipopeptides: the cell membrane-damaging surfactin and the fungicidal fengycin. They were identified with ESI-IT-MS observing their protonated molecules, the sodium- and potassium-cationized molecules and analysing the MS/MS spectra. The protonated molecules of surfactin and fengycin showed m/z values of 1009, 1023, and 1037 and 1450, 1463, 1493, and 1506, respectively. Cereulide (MW 1152) was purified with RP-HPLC from a food poisoning strain of B. cereus. Cereulide was identified with ESI-TQ-MS according to the protonated molecule observed at m/z 1154 and the ammonium-, sodium- and potassium-cationized molecules observed at m/z 1171, 1176, and 1192, respectively. The fragment ions of the MS/MS spectrum obtained from the protonated molecule of cereulide at m/z 1154 were also interpreted. We developed a quantification method for cereulide, using RP-HPLC-UV and valinomycin (MW 1110, which structurally resembles cereulide) as the reference compound. Furthermore, we showed empirically, using the BLM method, that the emetic toxin cereulide is a specific and effective potassium ionophore of whose toxicity target is especially the mitochondria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternaria leaf blotch and fruit spot caused by Alternaria spp. cause annual losses to the Australian apple industry. Control options are limited, mainly due to a lack of understanding of the disease cycle. Therefore, this study aimed to determine potential sources of Alternaria spp. inoculum in the orchard and examine their relative contribution throughout the production season. Leaf residue from the orchard floor, canopy leaves, twigs and buds were collected monthly from three apple orchards for two years and examined for the number of spores on their surface. In addition, the effects of climatic factors on spore production dynamics in each plant part were examined. Although all four plant parts tested contributed to the Alternaria inoculum in the orchard, significant higher numbers of spores were obtained from leaf residue than the other plant parts supporting the hypothesis that overwintering of Alternaria spp. occurred mainly in leaf residue and minimally on twigs and buds. The most significant period of spore production on leaf residue occurred from dormancy until bloom and on canopy leaves and twigs during the fruit growth stage. Temperature was the single most significant factor influencing the amount of Alternaria inoculum and rainfall and relative humidity showed strong associations with temperature influencing the spore production dynamics in Australian orchards. The practical implications of this study include the eradication of leaf residue from the orchard floor and sanitation of the canopy after harvest to remove residual spores from the trees.