849 resultados para Spatio-temporal model
Resumo:
With a wide range of applications benefiting from dense network air temperature observations but with limitations of costs, existing siting guidelines and risk of damage to sensors, new methods are required to gain a high resolution understanding of the spatio-temporal patterns of urban meteorological phenomena such as the urban heat island or precision farming needs. With the launch of a new generation of low cost sensors it is possible to deploy a network to monitor air temperature at finer spatial resolutions. Here we investigate the Aginova Sentinel Micro (ASM) sensor with a bespoke radiation shield (together < US$150) which can provide secure near-real-time air temperature data to a server utilising existing (or user deployed) Wireless Fidelity (Wi-Fi) networks. This makes it ideally suited for deployment where wireless communications readily exist, notably urban areas. Assessment of the performance of the ASM relative to traceable standards in a water bath and atmospheric chamber show it to have good measurement accuracy with mean errors < ± 0.22 °C between -25 and 30 °C, with a time constant in ambient air of 110 ± 15 s. Subsequent field tests of it within the bespoke shield also had excellent performance (root-mean-square error = 0.13 °C) over a range of meteorological conditions relative to a traceable operational UK Met Office platinum resistance thermometer. These results indicate that the ASM and bespoke shield are more than fit-for-purpose for dense network deployment in urban areas at relatively low cost compared to existing observation techniques.
Resumo:
The North Atlantic eddy-driven jet exhibits latitudinal variability, with evidence of three preferred latitudinal locations: south, middle and north. Here we examine the drivers of this variability and the variability of the associated storm track. We investigate the changes in the storm track characteristics for the three jet locations, and propose a mechanism by which enhanced storm track activity, as measured by upstream heat flux, is responsible for cyclical downstream latitudinal shifts in the jet. This mechanism is based on a nonlinear oscillator relationship between the enhanced meridional temperature gradient (and thus baroclinicity) and the meridional high-frequency (periods of shorter than 10 days) eddy heat flux. Such oscillations in baroclinicity and heat flux induce variability in eddy anisotropy which is associated with the changes in the dominant type of wave breaking and a different latitudinal deflection of the jet. Our results suggest that high heat flux is conducive to a northward deflection of the jet, whereas low heat flux is conducive to a more zonal jet. This jet deflecting effect was found to operate most prominently downstream of the storm track maximum, while the storm track and the jet remain anchored at a fixed latitudinal location at the beginning of the storm track. These cyclical changes in storm track characteristics can be viewed as different stages of the storm track’s spatio-temporal lifecycle.
Resumo:
Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.
Resumo:
Little research so far has been devoted to understanding the diffusion of grassroots innovation for sustainability across space. This paper explores and compares the spatial diffusion of two networks of grassroots innovations, the Transition Towns Network (TTN) and Gruppi di Acquisto Solidale (Solidarity Purchasing Groups – GAS), in Great Britain and Italy. Spatio-temporal diffusion data were mined from available datasets, and patterns of diffusion were uncovered through an exploratory data analysis. The analysis shows that GAS and TTN diffusion in Italy and Great Britain is spatially structured, and that the spatial structure has changed over time. TTN has diffused differently in Great Britain and Italy, while GAS and TTN have diffused similarly in central Italy. The uneven diffusion of these grassroots networks on the one hand challenges current narratives on the momentum of grassroots innovations, but on the other highlights important issues in the geography of grassroots innovations for sustainability, such as cross-movement transfers and collaborations, institutional thickness, and interplay of different proximities in grassroots innovation diffusion.
Resumo:
Archived soils could represent a valuable resource for the spatio-temporal inventory of soil carbon stability. However, archived soils are usually air-dried before storage and the impact of a drying pretreatment on physically and chemically-defined C fractions has not yet been fully assessed. Through the comparison of field-moist and corresponding air-dried (at 25oC for 2 weeks) forest soil samples, we examined the effect of air-drying on: a) the quantity and the quality of cold- (CWEC) and hot-water (HWEC) extractable C and b) the concentration of C in physically isolated fractions (free- and intra-aggregate light and organo-mineral). Soil samples were collected from the organic (O) and mineral (A and B) horizons of three different forest soils from southeastern England: (i) Cambisol under Pine (Pinus nigra); (ii) Cambisol under Beech (Fagus sylvatica) and (iii) Gleysol under oak (Quercus robur). CWEC concentrations for dry samples were up to 2 times greater than for corresponding field moist samples and had significantly (p < 0.001) higher phenolic content. However, the effect of drying pretreatment on HWEC, its phenolic content was not significant (p > 0.05) for most samples. Dried soils had significantly (p < 0.001) higher concentrations of free light-C while having lower concentrations of intra-aggregate-C when compared to moist samples (p < 0.001). However, fine silt and clay fractions were not significantly affected by the drying pretreatment (p=0.789). Therefore, based on the results obtained from gleysol and cambisol forest soils studied here, C contents in hot-water extractions and fine particle size physical fractions (< 25µm) seem to be robust measurements for evaluating C fractions in dried stored forest soils. Further soil types should be tested to evaluate the wider generality of these findings.
Resumo:
The size and complexity of data sets generated within ecosystem-level programmes merits their capture, curation, storage and analysis, synthesis and visualisation using Big Data approaches. This review looks at previous attempts to organise and analyse such data through the International Biological Programme and draws on the mistakes made and the lessons learned for effective Big Data approaches to current Research Councils United Kingdom (RCUK) ecosystem-level programmes, using Biodiversity and Ecosystem Service Sustainability (BESS) and Environmental Virtual Observatory Pilot (EVOp) as exemplars. The challenges raised by such data are identified, explored and suggestions are made for the two major issues of extending analyses across different spatio-temporal scales and for the effective integration of quantitative and qualitative data.
Resumo:
Synoptic wind events in the equatorial Pacific strongly influence the El Niño/Southern Oscillation (ENSO) evolution. This paper characterizes the spatio-temporal distribution of Easterly (EWEs) and Westerly Wind Events (WWEs) and quantifies their relationship with intraseasonal and interannual large-scale climate variability. We unambiguously demonstrate that the Madden–Julian Oscillation (MJO) and Convectively-coupled Rossby Waves (CRW) modulate both WWEs and EWEs occurrence probability. 86 % of WWEs occur within convective MJO and/or CRW phases and 83 % of EWEs occur within the suppressed phase of MJO and/or CRW. 41 % of WWEs and 26 % of EWEs are in particular associated with the combined occurrence of a CRW/MJO, far more than what would be expected from a random distribution (3 %). Wind events embedded within MJO phases also have a stronger impact on the ocean, due to a tendency to have a larger amplitude, zonal extent and longer duration. These findings are robust irrespective of the wind events and MJO/CRW detection methods. While WWEs and EWEs behave rather symmetrically with respect to MJO/CRW activity, the impact of ENSO on wind events is asymmetrical. The WWEs occurrence probability indeed increases when the warm pool is displaced eastward during El Niño events, an increase that can partly be related to interannual modulation of the MJO/CRW activity in the western Pacific. On the other hand, the EWEs modulation by ENSO is less robust, and strongly depends on the wind event detection method. The consequences of these results for ENSO predictability are discussed.
Resumo:
We establish a methodology for calculating uncertainties in sea surface temperature estimates from coefficient based satellite retrievals. The uncertainty estimates are derived independently of in-situ data. This enables validation of both the retrieved SSTs and their uncertainty estimate using in-situ data records. The total uncertainty budget is comprised of a number of components, arising from uncorrelated (eg. noise), locally systematic (eg. atmospheric), large scale systematic and sampling effects (for gridded products). The importance of distinguishing these components arises in propagating uncertainty across spatio-temporal scales. We apply the method to SST data retrieved from the Advanced Along Track Scanning Radiometer (AATSR) and validate the results for two different SST retrieval algorithms, both at a per pixel level and for gridded data. We find good agreement between our estimated uncertainties and validation data. This approach to calculating uncertainties in SST retrievals has a wider application to data from other instruments and retrieval of other geophysical variables.
Resumo:
The Castanhao reservoir was built in the state of Ceara, a dry region in Northeastern Brazil, to regulate the flow of the Jaguaribe River, for irrigation, and for power generation. It is an earth-filled dam, 60 m high, with a water capacity of 4.5 x 10(9) m(3). The seismicity in the area has been monitored since 1998, with a few interruptions, using one analog or one digital station and, during a few periods, a three-station network. The first earthquakes likely to be induced events were detected in 2003, when the water level was about 20 in high. In early 2004 a very heavy rainfall season quickly filled the reservoir. Shortly after, an increase in the seismic activity occurred and many micro-earthquakes were recorded. We suggest that this activity resulted from an increase in pore pressure due to undrained response. Therefore, we may classify this cluster of microearthquakes as ""initial seismicity."" We deployed a network with four analog stations in the area, following this activity, to determine the epicentral zone. At least three epicentral areas under the reservoir were detected. The spatio-temporal analysis of the available data revealed that the seismicity occurs in clusters and that these were activated at different periods. We identified four sets of faults (N-S-, E-W-, NW-SE-, and NE-SW-oriented), some of which moved in shallow crustal levels and as recently as the Quaternary (1.8 Ma). Under the present-day stress regime, the last two sets moved as strike-slip structures. We suggest a possible correlation between dormant faults and the observed induced seismicity. (c) 2008 Elsevier B.V. All rights reserved.
Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis
Resumo:
Connexin (Cx) channels and hemichannels are involved in essential processes during nervous system development such as apoptosis, propagation of spontaneous activity and interkinetic nuclear movement. In the first part of this study, we extensively characterized Cx gene and protein expression during retinal histogenesis. We observed distinct spatio-temporal patterns among Studied Cx and an overriding, ubiquitous presence of Cx45 in progenitor cells. The role of Cx-mediated communication was assessed by using broad-spectrum (carbenoxotone, CBX) and Cx36/Cx50 channel-specific (quinine) blockers. In vivo application of CBX, but not quinine, caused remarkable reduction in retinal thickness, suggesting changes in cell proliferation/apoptosis ratio. Indeed, we observed a decreased number of mitotic cells in CBX-injected retinas, with no significant changes in the expression of PCNA, a marker for cells in proliferative state. Taken together, Our results pointed a pivotal role of Cx45 in the developing retina. Moreover, this study revealed that Cx-mediated Communication is essential in retinal histogenesis, particularly in the control of cell proliferation. (C) 2009 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
We investigated the transition to spatio-temporal chaos in spatially extended nonlinear dynamical systems possessing an invariant subspace with a low-dimensional attractor. When the latter is chaotic and the subspace is transversely stable we have a spatially homogeneous state only. The onset of spatio-temporal chaos, i.e. the excitation of spatially inhomogeneous modes, occur through the loss of transversal stability of some unstable periodic orbit embedded in the chaotic attractor lying in the invariant subspace. This is a bubbling transition, since there is a switching between spatially homogeneous and nonhomogeneous states with statistical properties of on-off intermittency. Hence the onset of spatio-temporal chaos depends critically both on the existence of a chaotic attractor in the invariant subspace and its being transversely stable or unstable. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Refraction, interference, and diffraction are distinguishing features of wavelike phenomena. Although they are usually associated only with a purely spatial wave-propagation pattern, analogs to interference and diffraction involving the spatio-temporal dynamics of waves in one dimension have been discussed. We complete the triplet of analogies by discussing how spatio-temporal analogs to refraction are exhibited by a quantum particle in one dimension that is scattering off a step barrier. Similarly, birefringence in spacetime occurs for a spin-1/2 particle in a magnetic field.
Resumo:
No Sudoeste do Rio Grande do Sul ocorrem manchas de substrato arenoso sem cobertura vegetal, conhecidos regionalmente como areais. A tese reexamina o problema e suas causas, enfatizando o papel da vegetação natural e propondo estratégias para a revegetação e prevenção à arenização em sistemas pastoris. Evidências foram obtidas em levantamentos e experimento avaliando processos de degradação e regeneração da vegetação campestre do entorno de areais. Levantamento da vegetação, realizado em 41 parcelas de 4,5 x 9,0 m na borda de 11 areais indicou a existência de dois tipos de comunidades. Areais de Manoel Viana e aqueles usados pelo gado em São Francisco de Assis, com alto percentual de substrato exposto, são caracterizados principalmente por Elyonurus sp., Axonopus pressus e Butia paraguayensis. Areais de Alegrete e aqueles excluídos de pastejo em São Francisco de Assis, com menor percentual de substrato exposto, são caracterizados principalmente por Andropogon lateralis e Aristida laevis. Foi também avaliada a dinâmica da vegetação em gradientes de arenização, usando quadros (0,25 m2) contíguos em 16 transecções de 10 m localizadas em cinco areais. A dinâmica da vegetação foi associada ao uso das áreas pelo gado, pois houve aumento, após 14 meses, de substrato exposto em comunidades de areais sob pastoreio, enquanto que aquelas sem gado apresentaram uma dinâmica espacial-temporal de maior estabilidade da cobertura vegetal. Um experimento foi realizado para avaliar, durante 8 meses, o efeito de níveis controlados de soterramento por areia (0, 5, 10 e 20 cm) em comunidades do entorno de dois areais sob pastoreio. Comunidades caracterizadas por Elyonurus sp. e Axonopus pressus foram mais tolerantes ao soterramento. As evidências indicam que a exclusão do gado de areais pode ser uma alternativa eficaz para a revegetação de areais por espécies das comunidades naturais do entorno. Ademais, a arenização pode ser prevenida pelo uso adequado dos campos que mantenha a cobertura vegetal natural protegendo o solo dos processos erosivos hídrico e eólico.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
With the need to deploy management and monitoring systems of natural resources in areas susceptible to environmental degradation, as is the case of semiarid regions, several works have been developed in order to find effective models and technically and economically viable. Therefore, this study aimed to estimate the daily actual evapotranspiration (ETr) through the application of the Surface Energy Balance Algorithm for Land (SEBAL), from remote sensing products, in a semiarid region, Seridó of the Rio Grande do Norte, and do the validation of these estimates using ETr values obtained by the Penman-Monteith (standard method of the Food and Agriculture Organization-FAO). The SEBAL is based on energy balance method, which allows obtaining the vertical latent heat flux (LE) with orbital images and, consequently, of the evapotranspiration through the difference of flows, also vertical, of heat in the soil (G), sensitive heat (H) and radiation balance (Rn). The study area includes the surrounding areas of the Dourado reservoir, located in the Currais Novos/RN city. For the implementation of the algorithm were used five images TM/Landsat-5. The work was divided in three chapters in order to facilitate a better discussion of each part of the SEBAL processing, distributed as follows: first chapter addressing the spatio-temporal variability of the biophysical variables; second chapter dealing with spatio-temporal distribution of instant and daily radiation balance; and the third chapter discussing the heart of the work, the daily actual evapotranspiration estimation and the validation than to the study area