939 resultados para Single-molecule detection
Resumo:
In this paper we consider the problem of guided wave scattering from delamination in laminated composite and further the problem of estimating delamination size and layer-wise location from the guided wave measurement. Damage location and region/size can be estimated from time of flight and wave packet spread, whereas depth information can be obtained from wavenumber modulation in the carrier packet. The key challenge is that these information are highly sensitive to various uncertainties. Variation in reflected and transmitted wave amplitude in a bar due to boundary/interface uncertainty is studied to illustrate such effect. Effect of uncertainty in material parameters on the time of flight are estimated for longitudinal wave propagation. To evaluate the effect of uncertainty in delamination detection, we employ a time domain spectral finite element (tSFEM) scheme where wave propagation is modeled using higher-order interpolation with shape function have spectral convergence properties. A laminated composite beam with layer-wise placement of delamination is considered in the simulation. Scattering due to the presence of delamination is analyzed. For a single delamination, two identical waveforms are created at the two fronts of the delamination, whereas waves in the two sub-laminates create two independent waveforms with different wavelengths. Scattering due to multiple delaminations in composite beam is studied.
Resumo:
Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) C-13-H-1] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a ``uniqueness score'' and a ``coverage score''. Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of deduttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMIR-based metabolomics data by reducing existing impediments.
Resumo:
Plasmonics based sensing, using the surface plasmon resonance of metal nanoparticles, has been effectively demonstrated in various applications. Extending this methodology to cell and artificial lipid bilayer membranes is extremely beneficial in enhancing the sensitivity of the detection of binding and cellular transport of molecules across such membranes. Here, the creation of an artificial plasmonic biomembrane template is demonstrated and used to show the enhanced detection sensitivity of certain widely used biomarker molecules. The efficacy of these templates is explained in terms of the ability of the hydrophobic polymer grafted gold nanoparticles used to organize, penetrate, and fluidize the membranes. The enhancement of photoluminescence of the dye molecules used occurs over a reasonably large spectral range as compared to the plasmon resonance of gold nanoparticles. The results could, possibly, be extended to cellular membranes with relevant modifications, as well as to the detection of any other biological molecule appropriately labeled with fluorescent dye molecules, and demonstrate the versatility of these plasmonic bioinspired platforms as potential biochemical sensors.
Resumo:
In this work, we have reported a new approach on the use of stimuli-responsive molecularly imprinted polymer (MIP) for trace level sensing of alpha-fetoprotein (AFP), which is a well know cancer biomarker. The stimuli-responsive MIP is composed of three components, a thermo-responsive monomer, a pH responsive component (tyrosine derivative) and a highly fluorescent vinyl silane modified carbon dot. The synthesized AFP-imprinted polymer possesses excellent selectivity towards their template molecule and dual-stimuli responsive behavior. Along with this, the imprinted polymer was also explored as `OR' logic gate with two stimuli (pH and temperature) as inputs. However, the non-imprinted polymers did not have such `OR' gate property, which confirms the role of template binding. The imprinted polymer was also used for estimation of AFP in the concentration range of 3.96-80.0 ng mL(-1), with limit of detection (LOD) 0.42 ng mL(-1). The role of proposed sensor was successfully exploited for analysis of AFP in real human blood plasma, serum and urine sample. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Molecular dynamics (MD) simulations are performed to study adhesion and peeling of a short fragment of single strand DNA (ssDNA) molecule from a graphite surface. The critical peel-off force is found to depend on both the peeling angle and the elasticity of ssDNA. For the short ssDNA strand under investigation, we show that the simulation results can be explained by a continuum model of an adhesive elastic band on substrate. The analysis suggests that it is often the peak value, rather than the mean value, of adhesion energy which determines the peeling of a nanoscale material.
Resumo:
8 p.
Resumo:
Validated by comparison with DNS, numerical database of turbulent channel flows is yielded by Large Eddy Simulation (LES). Three conventional techniques: uv quadrant 2, VITA and mu-level techniques for detecting turbulent bursts are applied to the identification of turbulent bursts. With a grouping parameter introduced by Bogard & Tiedemann (1986) or Luchik & Tiederman (1987), multiple ejections detected by these techniques which originate from a single burst can be grouped into a single-burst event. The results are compared with experimental results, showing that all techniques yield reasonable average burst period. However, uv quadrant 2 and mu-level are found to be superior to VITA in having large threshold-independent range.
Resumo:
Dicistroviridae is a new family of small, nonenveloped, and +ssRNA viruses pathogenic to both beneficial arthropods and insect pests as well. Triatoma virus (TrV), a dicistrovirus, is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of Chagas disease. In this work, we report a single-step method to identify TrV, a dicistrovirus, isolated from fecal samples of triatomines. The identification method proved to be quite sensitive, even without the extraction and purification of RNA virus.
Resumo:
This thesis presents theories, analyses, and algorithms for detecting and estimating parameters of geospatial events with today's large, noisy sensor networks. A geospatial event is initiated by a significant change in the state of points in a region in a 3-D space over an interval of time. After the event is initiated it may change the state of points over larger regions and longer periods of time. Networked sensing is a typical approach for geospatial event detection. In contrast to traditional sensor networks comprised of a small number of high quality (and expensive) sensors, trends in personal computing devices and consumer electronics have made it possible to build large, dense networks at a low cost. The changes in sensor capability, network composition, and system constraints call for new models and algorithms suited to the opportunities and challenges of the new generation of sensor networks. This thesis offers a single unifying model and a Bayesian framework for analyzing different types of geospatial events in such noisy sensor networks. It presents algorithms and theories for estimating the speed and accuracy of detecting geospatial events as a function of parameters from both the underlying geospatial system and the sensor network. Furthermore, the thesis addresses network scalability issues by presenting rigorous scalable algorithms for data aggregation for detection. These studies provide insights to the design of networked sensing systems for detecting geospatial events. In addition to providing an overarching framework, this thesis presents theories and experimental results for two very different geospatial problems: detecting earthquakes and hazardous radiation. The general framework is applied to these specific problems, and predictions based on the theories are validated against measurements of systems in the laboratory and in the field.
Resumo:
My thesis studies how people pay attention to other people and the environment. How does the brain figure out what is important and what are the neural mechanisms underlying attention? What is special about salient social cues compared to salient non-social cues? In Chapter I, I review social cues that attract attention, with an emphasis on the neurobiology of these social cues. I also review neurological and psychiatric links: the relationship between saliency, the amygdala and autism. The first empirical chapter then begins by noting that people constantly move in the environment. In Chapter II, I study the spatial cues that attract attention during locomotion using a cued speeded discrimination task. I found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The more ecologically valid the motion features became (e.g., temporal expansion of each object, spatial depth structure implied by distribution of the size of the objects), the stronger the attentional effects. However, compared to inanimate objects and cues, people preferentially attend to animals and faces, a process in which the amygdala is thought to play an important role. To directly compare social cues and non-social cues in the same experiment and investigate the neural structures processing social cues, in Chapter III, I employ a change detection task and test four rare patients with bilateral amygdala lesions. All four amygdala patients showed a normal pattern of reliably faster and more accurate detection of animate stimuli, suggesting that advantageous processing of social cues can be preserved even without the amygdala, a key structure of the “social brain”. People not only attend to faces, but also pay attention to others’ facial emotions and analyze faces in great detail. Humans have a dedicated system for processing faces and the amygdala has long been associated with a key role in recognizing facial emotions. In Chapter IV, I study the neural mechanisms of emotion perception and find that single neurons in the human amygdala are selective for subjective judgment of others’ emotions. Lastly, people typically pay special attention to faces and people, but people with autism spectrum disorders (ASD) might not. To further study social attention and explore possible deficits of social attention in autism, in Chapter V, I employ a visual search task and show that people with ASD have reduced attention, especially social attention, to target-congruent objects in the search array. This deficit cannot be explained by low-level visual properties of the stimuli and is independent of the amygdala, but it is dependent on task demands. Overall, through visual psychophysics with concurrent eye-tracking, my thesis found and analyzed socially salient cues and compared social vs. non-social cues and healthy vs. clinical populations. Neural mechanisms underlying social saliency were elucidated through electrophysiology and lesion studies. I finally propose further research questions based on the findings in my thesis and introduce my follow-up studies and preliminary results beyond the scope of this thesis in the very last section, Future Directions.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
With the advent of the laser in the year 1960, the field of optics experienced a renaissance from what was considered to be a dull, solved subject to an active area of development, with applications and discoveries which are yet to be exhausted 55 years later. Light is now nearly ubiquitous not only in cutting-edge research in physics, chemistry, and biology, but also in modern technology and infrastructure. One quality of light, that of the imparted radiation pressure force upon reflection from an object, has attracted intense interest from researchers seeking to precisely monitor and control the motional degrees of freedom of an object using light. These optomechanical interactions have inspired myriad proposals, ranging from quantum memories and transducers in quantum information networks to precision metrology of classical forces. Alongside advances in micro- and nano-fabrication, the burgeoning field of optomechanics has yielded a class of highly engineered systems designed to produce strong interactions between light and motion.
Optomechanical crystals are one such system in which the patterning of periodic holes in thin dielectric films traps both light and sound waves to a micro-scale volume. These devices feature strong radiation pressure coupling between high-quality optical cavity modes and internal nanomechanical resonances. Whether for applications in the quantum or classical domain, the utility of optomechanical crystals hinges on the degree to which light radiating from the device, having interacted with mechanical motion, can be collected and detected in an experimental apparatus consisting of conventional optical components such as lenses and optical fibers. While several efficient methods of optical coupling exist to meet this task, most are unsuitable for the cryogenic or vacuum integration required for many applications. The first portion of this dissertation will detail the development of robust and efficient methods of optically coupling optomechanical resonators to optical fibers, with an emphasis on fabrication processes and optical characterization.
I will then proceed to describe a few experiments enabled by the fiber couplers. The first studies the performance of an optomechanical resonator as a precise sensor for continuous position measurement. The sensitivity of the measurement, limited by the detection efficiency of intracavity photons, is compared to the standard quantum limit imposed by the quantum properties of the laser probe light. The added noise of the measurement is seen to fall within a factor of 3 of the standard quantum limit, representing an order of magnitude improvement over previous experiments utilizing optomechanical crystals, and matching the performance of similar measurements in the microwave domain.
The next experiment uses single photon counting to detect individual phonon emission and absorption events within the nanomechanical oscillator. The scattering of laser light from mechanical motion produces correlated photon-phonon pairs, and detection of the emitted photon corresponds to an effective phonon counting scheme. In the process of scattering, the coherence properties of the mechanical oscillation are mapped onto the reflected light. Intensity interferometry of the reflected light then allows measurement of the temporal coherence of the acoustic field. These correlations are measured for a range of experimental conditions, including the optomechanical amplification of the mechanics to a self-oscillation regime, and comparisons are drawn to a laser system for phonons. Finally, prospects for using phonon counting and intensity interferometry to produce non-classical mechanical states are detailed following recent proposals in literature.
Resumo:
Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz, 3 cm-1 to 300 cm-1, or 3000 μm to 30 μm) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 cm-1) and the mid-IR (400 - 4000 cm-1). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with ~10 GHz (~0.3 cm-1) resolution.
Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm-1 (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice.
To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoiumbased THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 cm-1), in exact agreement with the fundamental transition frequency of the υ4 vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies.
To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab. We report the first results from an experiment using a plasma-based THz source for nonlinear spectroscopy that has the potential to enable nonlinear THz spectra with a sub-100 fs temporal resolution, and how the optics involved in the plasma mechanism can enable THz pulse shaping. Finally, we discuss how a single-shot THz detection scheme could improve the acquisition of THz data and how such a scheme could be implemented in the Blake lab. The instruments developed herein will hopefully remain a part of the groups core competencies and serve as building blocks for the next generation of THz instrumentation that pushes the frontiers of both chemistry and the scientific enterprise as a whole.
Resumo:
Detection of biologically relevant targets, including small molecules, proteins, DNA, and RNA, is vital for fundamental research as well as clinical diagnostics. Sensors with biological elements provide a natural foundation for such devices because of the inherent recognition capabilities of biomolecules. Electrochemical DNA platforms are simple, sensitive, and do not require complex target labeling or expensive instrumentation. Sensitivity and specificity are added to DNA electrochemical platforms when the physical properties of DNA are harnessed. The inherent structure of DNA, with its stacked core of aromatic bases, enables DNA to act as a wire via DNA-mediated charge transport (DNA CT). DNA CT is not only robust over long molecular distances of at least 34 nm, but is also especially sensitive to anything that perturbs proper base stacking, including DNA mismatches, lesions, or DNA-binding proteins that distort the π-stack. Electrochemical sensors based on DNA CT have previously been used for single-nucleotide polymorphism detection, hybridization assays, and DNA-binding protein detection. Here, improvements to (i) the structure of DNA monolayers and (ii) the signal amplification with DNA CT platforms for improved sensitivity and detection are described.
First, improvements to the control over DNA monolayer formation are reported through the incorporation of copper-free click chemistry into DNA monolayer assembly. As opposed to conventional film formation involving the self-assembly of thiolated DNA, copper-free click chemistry enables DNA to be tethered to a pre-formed mixed alkylthiol monolayer. The total amount of DNA in the final film is directly related to the amount of azide in the underlying alkylthiol monolayer. DNA monolayers formed with this technique are significantly more homogeneous and lower density, with a larger amount of individual helices exposed to the analyte solution. With these improved monolayers, significantly more sensitive detection of the transcription factor TATA binding protein (TBP) is achieved.
Using low-density DNA monolayers, two-electrode DNA arrays were designed and fabricated to enable the placement of multiple DNA sequences onto a single underlying electrode. To pattern DNA onto the primary electrode surface of these arrays, a copper precatalyst for click chemistry was electrochemically activated at the secondary electrode. The location of the secondary electrode relative to the primary electrode enabled the patterning of up to four sequences of DNA onto a single electrode surface. As opposed to conventional electrochemical readout from the primary, DNA-modified electrode, a secondary microelectrode, coupled with electrocatalytic signal amplification, enables more sensitive detection with spatial resolution on the DNA array electrode surface. Using this two-electrode platform, arrays have been formed that facilitate differentiation between well-matched and mismatched sequences, detection of transcription factors, and sequence-selective DNA hybridization, all with the incorporation of internal controls.
For effective clinical detection, the two working electrode platform was multiplexed to contain two complementary arrays, each with fifteen electrodes. This platform, coupled with low density DNA monolayers and electrocatalysis with readout from a secondary electrode, enabled even more sensitive detection from especially small volumes (4 μL per well). This multiplexed platform has enabled the simultaneous detection of two transcription factors, TBP and CopG, with surface dissociation constants comparable to their solution dissociation constants.
With the sensitivity and selectivity obtained from the multiplexed, two working electrode array, an electrochemical signal-on assay for activity of the human methyltransferase DNMT1 was incorporated. DNMT1 is the most abundant human methyltransferase, and its aberrant methylation has been linked to the development of cancer. However, current methods to monitor methyltransferase activity are either ineffective with crude samples or are impractical to develop for clinical applications due to a reliance on radioactivity. Electrochemical detection of methyltransferase activity, in contrast, circumvents these issues. The signal-on detection assay translates methylation events into electrochemical signals via a methylation-specific restriction enzyme. Using the two working electrode platform combined with this assay, DNMT1 activity from tumor and healthy adjacent tissue lysate were evaluated. Our electrochemical measurements revealed significant differences in methyltransferase activity between tumor tissue and healthy adjacent tissue.
As differential activity was observed between colorectal tumor tissue and healthy adjacent tissue, ten tumor sets were subsequently analyzed for DNMT1 activity both electrochemically and by tritium incorporation. These results were compared to expression levels of DNMT1, measured by qPCR, and total DNMT1 protein content, measured by Western blot. The only trend detected was that hyperactivity was observed in the tumor samples as compared to the healthy adjacent tissue when measured electrochemically. These advances in DNA CT-based platforms have propelled this class of sensors from the purely academic realm into the realm of clinically relevant detection.