949 resultados para Signaling Pathways


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The NMDA receptor (NMDAR) channel has been proposed to function as a coincidence-detection mechanism for afferent and reentrant signals, supporting conscious perception, learning, and memory formation. In this paper we discuss the genesis of distorted perceptual states induced by subanesthetic doses of ketamine, a well-known NMDA antagonist. NMDAR blockage has been suggested to perturb perceptual processing in sensory cortex, and also to decrease GABAergic inhibition in limbic areas (leading to an increase in dopamine excitability). We propose that perceptual distortions and hallucinations induced by ketamine blocking of NMDARs are generated by alternative signaling pathways, which include increase of excitability in frontal areas, and glutamate binding to AMPA in sensory cortex prompting Ca++ entry through voltage-dependent calcium channels (VDCCs). This mechanism supports the thesis that glutamate binding to AMPA and NMDARs at sensory cortex mediates most normal perception, while binding to AMPA and activating VDCCs mediates some types of altered perceptual states. We suggest that Ca++ metabolic activity in neurons at associative and sensory cortices is an important factor in the generation of both kinds of perceptual consciousness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genus Yersinia contains three species pathogenic to humans: Y. pestis, Y. enterocolitica e Y. pseudotuberculosis. The pathogenicity of Yersinia is linked to the presence of a 70-kb virulence plasmid (pYV) that is common to the three species and codifies a type III secretion system and a set of virulence proteins, including those known as Yersinia outer proteins (Yops), that are exported by this system when the bacteria encounter host cells. Two Yops translocators (YopB and YopD) are inserted into the host plasma membrane and transport six effectors (YopO, YopH, YopM, YopJ and YopT) across the membrane into the cytosol of the host cell. The Yops effectors interfere with multiple signaling pathways of the infected cell, affecting both the innate and adaptive immune responses. This article focuses on the role of Yops in the modulation of the host immune response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitric oxide is synthesized from L-arginine and plays an important role in blood pressure regulation, platelets aggregation and atherosclerosis development. Most of the studies have shown that the beneficial effects of the L-arginine supplementation are related to an increasing of nitric oxide bioavailability to the cells, improving the endothelial dysfunction, decreasing oxidative stress, ameliorating lipid profile and insulin resistance. However some studies show conflicting results. Considering the role of the endothelium on the pathogenesis of the cardiovascular diseases as well as on the endocrine-metabolic diseases, this review will update studies involving the role of nitric oxide and its signaling pathways in the regulation of vascular function. Furthermore, this review will focus on the main results of the clinical trials using oral L-arginine supplementation, with or without physical exercise, in an attempt to obtain beneficial effects on the cardiovascular and endocrine-metabolic systems in patients and healthy subjects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and methods The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Results Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coffee is one of the most valuable exported agricultural product worldwide as well as the second most traded commodity after oil. This crop represents a source of employment and considerably accounts for the revenue of the country, besides its undeniable importance for local and world socioeconomical scenery. The quality of the coffee drink is directly related to the fruit ripening stage, which is found in different stages at harvesting due to the sequential flowering, increasing costs with the production and generating a lower-quality beverage. The asynchronous flowering of the coffee tree comes from the uneven development of buds, which can be influenced by environmental factors, taking into account that the anthesis takes place after a water deficit period, followed by precipitation. Changes in the hormone balance have been observed after water deficit and rehydration cycles, and such oscillation on the water status of the plant increased the level of ethylene in some species. This finding led to the association between the requirements at the flowering stage of the coffee tree and the involvement of the ethylene in promoting anthesis. The application of 1- MCP (ethylene action inhibitor) triggered the anthesis in coffee trees. And, in coffee seedlings in greenhouse conditions after a period of water shortage followed by irrigation, the profile of gene expression of the biosynthesis route and signaling of ethylene are changed in leaves and roots. The increased levels of the ethylene precursor (ACC) in roots throughout the dry season and the transportation of this compound into shoots may be the signal to trigger the anthesis in coffee tree after rehydration. Thus, in order to better understand the role of the ethylene in regulation of flowering, we analyzed the effects of the exogenous application of 1-MCP in different physiological characteristics and in the expression of genes related to the ethylene biosynthesis and signaling pathways in coffee leaves and bud from plants under field conditions. The evaluations and tissue sampling were carried out in different times treatments implementation: T1 – control, T2 – 1-MCP+Break-Thru, and T3 – Break-Thru. There was influence of 1-MCP and Break-Thru in gas exchange parameters and of 1-MCP contributed to the increase in relative water content. RT-qPCR analyses showed a different behavior in relation to the profile of gene expression in leaves and buds analyzed in the present study (CaACS1 – like, CaACO1 – like, CaACO4 – like, CaETR4 – like) and the expression levels were changed a few hours (2h) after applying the products. However, there was flowering only in plants treated with 1-MCP, in the absence of rain and irrigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)