991 resultados para Reynolds, Myra,


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study deals with the formulation, mathematical property and physical meaning of the simplified Navier-Stokes (SNS) equations. The tensorial SNS equations proposed is the simplest in form and is applicable to flow fields with arbitrary body boundaries. The zones of influence and dependence of the SNS equations, which are of primary importance to numerical solutions, are expounded for the first time from the viewpoint of subcharacteristics. Besides, a detailed analysis of the diffusion process in flow fields shows that the diffusion effect has an influence zone globally windward and an upwind propagation greatly depressed by convection. The maximum upwind influential distance of the viscous effect and the relative importance of the viscous effect in the flow direction to that in the direction normal to the flow are represented by the Reynolds number, which illustrates the conversion of the complete Navier-Stokes (NS) equations to the SNS equations for flows with large Reynolds number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ten kinds of the simplified Navier-Stokes equations (SNSE) are reviewed and also used to calculate the Jeffery-Hamel flow as well as to analyze briefly the seven kinds of flows to which the exact solutions of the complete Navier-Stokes equations (CNSE) have been found. Analysis shows that the actual differences among the solutions of the different SNSE can go beyond the range of the order of magnitude of Re-1/2 and result even in different flow patterns, therefore, how to choose the viscous terms included in the SNSE is worthy of notice where Re=S∞u∞ L/μ∞ is the Reynolds numbers. For the aforesaid eight kinds of flows, the solutions to the inner-outer-layer-matched SNSE and to the thin-layer-2-order SNSE agree completely with the exact solutions to CNSE. But the solutions to all the other SNSE are not completely consistent with the exact solutions to CNSE and not a few of them are actually the solutions of the classical boundary layer theory. The innerouter-layer-matched SNSE contains the shear stress causing angular displacement of the inormal axis with respect to the streamwise axis and the normal stress causing expansion-contraction in the direction of the normal axis and the viscous terms being of the order of magnitude of the normal stress; and it can also reasonably treat the inertial terms as well as the relation between the viscous and inertial terms. Therefore, it seems promising in respects of both mechanics and mathematics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions : the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a seriesexpansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

phases should be specified when the particle Reynolds number is higher than

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, processes in the early stages of vortex motion and the development of flow structure behind an impulsively-started circular cylinder at high Reynolds number are investigated by combining the discrete vortex model with boundary layer theory, considering the separation of incoming flow boundary layer and rear shear layer in the recirculating flow region. The development of flow structure and vortex motion, particularly the formation and development of secondary vortex and a pair of secondary vortices and their effect on the flow field are calculated. The results clearly show that the flow structure and vortices motion went through a series of complicated processes before the symmetric main vortices change into asymmetric: development of main vortices induces secondary vortices; growth of the secondary vortices causes the main vortex sheets to break off and causes the symmetric main vortices to become “free” vortices, while a pair of secondary vortices is formed; then the vortex sheets, after breaking off, gradually extend downstream and the structure of a pair of secondary vortices becomes relaxed. These features of vortex motion look very much like the observed features in some available flow field visualizations. The action of the secondary vortices causes the main vortex sheets to break off and converts the main vortices into free vortices. This should be the immediate cause leading to the instability of the motion of the symmetric main vortices. The flow field structure such as the separation position of boundary layer and rear shear layer, the unsteady pressure distributions and the drag coefficient are calculated. Comparison with other results or experiments is also made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the steady axi-symmetric thermo-capillary motion in a short meltingcolumn.with the assumptions that the Marangoni number M<<1, the Reynolds number Re<<1 andthe capillary number C<<1, at the leading order, the solutions of the problem are obtained inthe form of series. For two kinds of typical cases, symmetric and anti-symmetric distributionof air temperature, the numerical calculations are made. The results describe the effect ofendwalls on thermo-capillary flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

化学机械抛光(chemicalmechanicalpolishing,CMP)是一项融合了化学分解和机械力学的工艺技术,其中包含了流体动力润滑的作用.文中通过分析流场效应,建立了Sum在化学机械抛光实验基础上获得的润滑(Reynolds)方程,利用Chebyshev加速超松弛技术对润滑方程进行求解,得到了新的抛光液压力分布模型,给出了一些新的载荷及转矩在不同参数下的变化情况.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

最近,严宗毅教授编著的《低雷诺数流理论》已由北京大学出版社出版(2002年)。本书是适合于从事缓慢或小尺度黏性流动研究和有关工程技术人员参考的一本不可多得的专著,他也供高等院校有关专业研究生和高年级学生学习的一本优秀教材。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对不同Reynolds数的二维不可压槽道湍流(即二维槽道流动的扰动饱和态)进行了标度律分析。指出二维槽道湍流中存在明显的标度律及扩展自相似性;分析了标度数随着流动Reynolds数的变化,指出随着Reynolds数的增长,标度指数的奇异性并没有减小的趋势;由此推测充分发展的二维槽道湍流的标度指数也是奇异的。将所得计算值和佘振苏等人的SL标度律预测值相比较,认为佘等人的SL标度律公式能很好描述二维湍流。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用高精度差分方法对来流马赫数0.7,来流Reynolds数250000/Inch,锥角为20°的尖锥边界层的整个空间转捩过程进行了直接数值模拟.对流项采用了7阶迎风格式离散,黏性项采用6阶中心格式离散,时间推进为3阶Runge-Kutta方法.对转捩形成的充分发展湍流进行了统计分析,包括平均速度分布,近壁湍流强度和雷诺应力等统计数据与平板边界层理论及实验吻合很好,验证了结果的正确性.显示了近壁湍流的典型拟序结构——高、低速条带结构并根据流向速度的周向相关量确定了条带的间距,以当地壁面尺度度量的条带间距沿流向并没有显著变化.给出了柱坐标下的可压湍动能发展方程,并据此对近壁湍动能的生成、耗散和输运机制进行了分析.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用8阶精度的中心差分格式及7阶精度的迎风偏斜格式对Reλ=72-153,Mt=0.2-0.7的均匀各向同性湍流进行了直接数值模拟,建立了湍流数据库。与他人的计算结果吻合十分理想,说明方法的有效性。数值结果表明,采用适当的迎风型差分格式可以克服起动问题(start-up problem)对湍流Mach数的限制,提高可计算的湍流Mach数,是可压湍流直接数值模拟的有效方法。分析了压缩性效应对湍流统计量的影响,发现压缩性使得湍动能的衰减加快。探讨了可压湍流中微激波产生的机理,对流场进行了标度律分析。发现在本文的Reynolds数和湍流Mach数条件下,流场中扩展自相似性仍然成立,同时发现压缩性对标度指数影响不大。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过对充分发展旋转槽道和后台阶流动两个二维定常湍流问题的计算,比较了标准k-ε模型、Gibson-Launder二阶矩和一个基于湍流重正化群理论推导的二阶矩模型模拟复杂湍流运动的能力,尤其是检验这种新型的湍流重正化群二阶矩模型的性能.计算结果表明,与标准k-ε模型相比,Reynolds应力模型能够捕捉到旋转流动中由旋转带来的湍流流场结构的改变,能更准确地预测后台阶流动中的回流区长度,对于各物理量的计算,湍流重正化群二阶矩模型和Gibson-Launder模型的精度相当.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在连续介质和滑流区有限长度槽道内的稳定气流,通过整体质量守恒规律得到了沿槽道轴向的压力分布和质量流率的分析表达式。在过渡领域区,也提供了槽道流动压力分布的严格的动理学理论解。在Poiseuille流动的质量流率动理学理论解给定的情况下,压力分布的控制方程被证实是被前一作者从轴承润滑问题移植到解微槽道问题的退化Reynolds方程。同时得到了质量流率分析表达式,它们和现有试验数据的比较相符很好。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

介绍通过实验对圆柱尾流旋涡脱落进行抑制的方法及其结果。实验模型的展径比为38,实验的雷诺数范围为3 * 10~2~1.6 * 10~3。抑制方法是在圆柱(直径为D)表面沿展向每隔一定间距伸出一直径0.18D、长度为1.5D的小棒,实验结果表明,当棒间距小于3D,棒与来流夹角在30 °~ 90 °范围内,可有效抑制旋涡脱落。