900 resultados para Respiracao artificial
Resumo:
Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.
Resumo:
Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology
Resumo:
Artificial neural networks (ANNs) are relatively new computational tools that have found extensive utilization in solving many complex real-world problems. This paper describes how an ANN can be used to identify the spectral lines of elements. The spectral lines of Cadmium (Cd), Calcium (Ca), Iron (Fe), Lithium (Li), Mercury (Hg), Potassium (K) and Strontium (Sr) in the visible range are chosen for the investigation. One of the unique features of this technique is that it uses the whole spectrum in the visible range instead of individual spectral lines. The spectrum of a sample taken with a spectrometer contains both original peaks and spurious peaks. It is a tedious task to identify these peaks to determine the elements present in the sample. ANNs capability of retrieving original data from noisy spectrum is also explored in this paper. The importance of the need of sufficient data for training ANNs to get accurate results is also emphasized. Two networks are examined: one trained in all spectral lines and other with the persistent lines only. The network trained in all spectral lines is found to be superior in analyzing the spectrum even in a noisy environment.
Resumo:
Integer filling factor phases of many-electron vertically coupled diatomic artificial quantum dot molecules are investigated for different values of the interdot coupling. The experimental results are analyzed within local-spin density functional theory for which we have determined a simple lateral confining potential law that can be scaled for the different coupling regimes, and Hartree-Fock theory. Maximum density droplets composed of electrons in both bonding and antibonding or just bonding states are revealed, and interesting isospin-flip physics appears for weak interdot coupling when the systematic depopulation of antibonding states leads to changes in isospin.
Resumo:
The magnetoresistance across interfaces in the itinerant ferromagnetic oxide SrRuO3 have been studied. To define appropriately the interfaces, epitaxial thin films have been grown on bicrystalline and laser-patterned SrTiO3 substrates. Comparison is made with results obtained on similar experiments using the double-exchange ferromagnetic oxide La2/3Sr1/3MnO3. It is found that in SrRuO3, interfaces induce a substantial negative magnetoresistance, although no traces of the low-field spin tunneling magnetoresistance are found. We discuss these results on the basis of the distinct degree of spin polarization in ruthenates and manganites and the different nature of the surface magnetic layer formed at interfaces.
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components
Resumo:
Artificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.
Resumo:
Dictyostelium discoideum is a social amoeba that serves as a model system for RNA interference and related mechanisms. Its position between plants and animals enables evolutionary snapshot of mechanisms and protein machinery involved in investigated subjects. MiRNAs are small regulatory RNAs that are evolutionary conserved and present in animals, plants, viruses and some prokaryotes. They have roles in development, cell growth and differentiation, apoptosis and their miss-regulation is associated with many diseases such as cancer, neurodegenerative disorders and diabetes. Recently, through sequencing of DNA libraries miRNAs have been discovered in D. discoideum. In this work, it has been shown that heterologues miRNA let-7 can be expressed and processed in D. discoideum. Expression of let-7 miRNA in social amoeba resulted in a strong developmental phenotype suggesting an overload of the processing/silencing system or/and endogenous targets. The various effects on prel-7 strain have been observed and characterized, serving as a background for postulation of miRNA roles. An artificial miRNA system has been established and imposed to D. discoideum, showing that miRNAs in Dictyostelium could mediate gene expression on the level of mRNA stability and on the posttranscriptional level. Furthermore, presence of translational inhibition as a type of gene control was shown for the first time in this organism. Due to it new structures representing co-localities of miRNA and target mRNA have been detected. Taken together, this work shows functional artificial miRNA system and postulates roles of endogenous small RNA in social amoeba.
Resumo:
Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.
Resumo:
This report describes a working autonomous mobile robot whose only goal is to collect and return empty soda cans. It operates in an unmodified office environment occupied by moving people. The robot is controlled by a collection of over 40 independent "behaviors'' distributed over a loosely coupled network of 24 processors. Together this ensemble helps the robot locate cans with its laser rangefinder, collect them with its on-board manipulator, and bring them home using a compass and an array of proximity sensors. We discuss the advantages of using such a multi-agent control system and show how to decompose the required tasks into component activities. We also examine the benefits and limitations of spatially local, stateless, and independent computation by the agents.
Resumo:
Most Artificial Intelligence (AI) work can be characterized as either ``high-level'' (e.g., logical, symbolic) or ``low-level'' (e.g., connectionist networks, behavior-based robotics). Each approach suffers from particular drawbacks. High-level AI uses abstractions that often have no relation to the way real, biological brains work. Low-level AI, on the other hand, tends to lack the powerful abstractions that are needed to express complex structures and relationships. I have tried to combine the best features of both approaches, by building a set of programming abstractions defined in terms of simple, biologically plausible components. At the ``ground level'', I define a primitive, perceptron-like computational unit. I then show how more abstract computational units may be implemented in terms of the primitive units, and show the utility of the abstract units in sample networks. The new units make it possible to build networks using concepts such as long-term memories, short-term memories, and frames. As a demonstration of these abstractions, I have implemented a simulator for ``creatures'' controlled by a network of abstract units. The creatures exist in a simple 2D world, and exhibit behaviors such as catching mobile prey and sorting colored blocks into matching boxes. This program demonstrates that it is possible to build systems that can interact effectively with a dynamic physical environment, yet use symbolic representations to control aspects of their behavior.
Resumo:
This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.